
WenQuanYi Micro Hei [Scale=0.9]WenQuanYi Micro Hei Mono song-
WenQuanYi Micro Hei sfWenQuanYi Micro Hei "zh" = 0pt plus 1pt

nebulas Documentation
ìűIJìŃIJ 1.0

nebulas

11ìŻŤ 21, 2019

Category:

1 Welcome to the open-source Nebulas wiki! 1

2 Use Wiki 2
2.1 Mainnet . 2
2.2 Dapps . 2
2.3 Ecosystem . 2
2.4 Get Involved . 2

i

CHAPTER 1

Welcome to the open-source Nebulas wiki!

Nebulas is a next-generation public blockchain, aiming for a continuously improving
ecosystem. Based on its blockchain valuation mechanism, Nebulas proposes future-oriented
incentive and consensus systems, and the ability to self-evolve without forking.

Nebulas community is open and everyone can be a contributor and build a decentralized
world with us.

The Nebulas wiki is a collaboration tool for the community to publish various documents
in a collaborative manner. Include usage guides, development guides, learning resources, and
other useful documents.

1

wiki-usage-guide.html
dapp-development/README.html
dapp-development/learning-resources.html

CHAPTER 2

Use Wiki

2.1 Mainnet

2.2 Dapps

2.3 Ecosystem

2.4 Get Involved

2.4.1 Wiki Usage Guide

How to edit a Wiki page

A full tutorial on how to edit Wiki pages can be found here.

Editing Software

For users who are familiar with git and would like to edit the Wiki locally, reST should be
used to edit .rst files, and Pandoc Markdown for .md files.

Click here to learn about the differences between Pandoc Markdown and reST.

Below are some of the learning resources that can be used to further your knowledge of
Markdown:

• How to use Markdown by John Gruber

2

https://medium.com/nebulasio/nebulas-wiki-user-guide-5418715c6988
http://www.unexpected-vortices.com/doc-notes/markdown-and-rest-compared.html
https://daringfireball.net/projects/markdown/syntax

nebulas Documentation, ìűIJìŃIJ 1.0

• Markdown Guide by iA Writer

The aftermath

When you edit pages on Github, you should always click on “Preview changes“ to view
the result of your labor.

After your contribution has been merged, you can check the building process here.

2.4.2 How to Contribute

Your contribution matters!

Nebulas aims for a continuously improving ecosystem, which means we need help
from the community. We need your contributions! It is not limited exclusively to
programming, but also bug reports and translations, spreading the tenets of Nebu-
las, answering questions, and so on.

Most of our projects and their corresponding bounties can be found here.

1. Code & Documentation

1.1. Mainnet Development

Besides programming, mainnet development is still ongoing and needs the help of the
community to tackle challenging problems in the blockchain industry. For instance, we need to
design manipulation-resistant mechanisms for blockchain, formally verify the new consensus
algorithm, improve security of the Nebulas mainnet, apply new crypto algorithms to Nebulas,
etcetera.

We are excited to devote ourselves to blockchain and to see how blockchain technology
can improve people‘s lives. We want to share this exciting experience with the whole commu-
nity. Thus, we call upon all developers!

Learn more:

• Our github: github.com/nebulasio/go-nebulas

• Our Roadmap: nebulas.io/roadmap.html (Stay tuned!)

1.2. Bug Reporting

We have always valued bug reporting!

If you find a bug, please report it to the Nebulas community. You will be rewarded for it.
Check the Nebulas Bounty Program here for more details.

2.4. Get Involved 3

https://ia.net/writer/support/general/markdown-guide
https://readthedocs.org/projects/nebdocs/builds/
http://go.nebulas.io
https://github.com/nebulasio/go-nebulas
https://nebulas.io/roadmap.html
http://wiki.nebulas.io/en/latest/bounty-program.html

nebulas Documentation, ìűIJìŃIJ 1.0

Bugs may be found on the Nebulas testnet, mainnet, nebPay, neb.js, web wallet, as well
as other tools and documentation. We will follow the OWASP Risk Assessment System to
calculate the corresponding bounty/reward based on the risk degree of the bug. More TBA.

If you have suggestions on how to fix bugs, or improve upon an affiliated project, please
do not hesitate to let us know. You can also participate in the development and directly protect
the onchain assets. Together, letâĂŹs make Nebulas even more safe, secure, and robust.

To submit bugs and related information, please post the information in the related Nebulas
mail groups. When submitting reports, please be careful and pay attention to the mail group in
order to prevent bugs from being exploited or create duplicates. We welcome you to follow the
mail group and join the discussion.

Mail group list: lists.nebulas.io/cgi-bin/mailman/listinfo

Mainnet bug list: lists.nebulas.io/cgi-bin/mailman/listinfo/mainnet-bugs

Testnet bug list: lists.nebulas.io/cgi-bin/mailman/listinfo/testnet-bugs

1.3. Translation

Translating is important to spread Nebulas to the whole world!

We welcome community members from around the world to participate in the transla-
tion of Nebulas documentation. You can translate everything from the wiki, including mainnet
technical documents, the DApp FAQ, official documents such as the Nebulas many academic
papers, the Nebulas design principles introduction document, and more. Your contribution will
significantly help numerous Nebulas developers and community members. Please note that
some documents will require an academic background in Math, Computer Science, Cryptogra-
phy, and/or other specialties.

1.4. Documentation Writing

Developers in the Nebulas community require documentation to help them understand
and use the various functions of Nebulas. The community is welcome and encouraged to write
technical introductions and FAQs. In addition, Nebulas‘ community members will also benefit
from easy-to-understand introductory guides and user guides on various ecosystem tools.

Your contribution will be of use to all community developers and members, and may also
be translated into multiple languages to benefit an even larger amount of members.

1.5. Wiki UI Design

We welcome UI developers to optimize our wiki page and make it more user friendly and
easier to read.

Download the design template of the Nebulas wiki >

Download the logo >

2.4. Get Involved 4

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://lists.nebulas.io/cgi-bin/mailman/listinfo
https://lists.nebulas.io/cgi-bin/mailman/listinfo/mainnet-bugs
https://lists.nebulas.io/cgi-bin/mailman/listinfo/testnet-bugs
https://drive.google.com/drive/folders/10ZWW1ygjnLa3VtjJ88fhv1jUai9SXNNz?usp=sharing
https://nebulas.io/docs/NEBULAS-LOGO-SVG.zip

nebulas Documentation, ìűIJìŃIJ 1.0

If you have any questions or comments, please do not hesitate to post on our GitHub.

2. User Groups

Communication is key for building a vibrant community. People need to talk with each
other in order to share their ideas and thoughts on Nebulas.

Nebulas uses several platforms to connect with its global community. Please refer to the
âĂIJCommunityâĂİ page on the official website for more information.

Discord: Available to all community members. You can subscribe to Nebulas News, as
well as participate in group discussions. Discord is many users‘ first choice.

Mailing lists: Discussion groups for core development and bug reporting. We welcome
developers to subscribe.

Forum: Reddit/r/nebulas (for all), Reddit/r/nasdev (for developers)

Communication: Slack (for developers), Telegram (for non-developers)

Community developers are welcome to create an IRC (Internet Relay Chat) channel for
better communication among developers.

3. Bounties

We, the Nebulas team, happily introduce several bounties to reward early contributors.
You can check them out here.

4. Donations

Donations to the Nebulas Foundation to further the development of Nebulas are greatly
appreciated. Both NAS and ETH are accepted. We also welcome community members to
support us in material terms. For instance, the donation of meetup locations/venues, local
guides, photography, etcetera. We can also make your contribution known to the community if
you would like. If you are an enthusiastic community member and are willing to contribute to
our community, email contact@nebulas.io for more details.

2.4.3 Bounty Program

Nearly all projects are posted on the Nebulas Project Page along with their corresponding
bounties, and users are expected to apply in order to claim a project or parts of it. This process
applies to the wiki and to the NAT Bug Bounty Program. For now, the Nebulas Bug Bounty
Program only requires you to submit a form with the relevant information.

Below you will find in-depth information about all the Bounty Programs so you can get
started on contributing to the flourishing Nebulas ecossystem and get rewarded for it!

2.4. Get Involved 5

https://nebulas.io/community.html
https://reddit.com/r/nebulas
https://reddit.com/r/nasdev
https://nebulasio.herokuapp.com/
https://t.me/nebulasio
http://wiki.nebulas.io/en/latest/bounty-program.html
mailto:contact@nebulas.io
https://go.nebulas.io
https://docs.google.com/forms/d/e/1FAIpQLScaCeODU26maPJIuyCkX6Lsa0A5Xi2AZ_z-mvKlHmd89_CaXQ/viewform

nebulas Documentation, ìűIJìŃIJ 1.0

The Nebulas Wiki Bounty Program

Previously users who created or modified content on the Nebulas Wiki were entitled to
potentially win a bounty in the form of NAS. Nowadays, the process is quite different.

To qualify for the wiki bounty, go to the aforementioned project page and search for
“wiki,“ or simply click here to see all the available listings.

The Nebulas Bug Bounty Program

The Nebulas Bug Bounty aims to improve the security of Nebulas Ecosystem, ensuring
the establishment of a benign Nebulas ecosystem. The Nebulas Bug Bounty Program provides
bounties for the discovered vulnerabilities. This bounty program was initiated and implemented
by the Nebulas Technical Committee (NTC), in conjunction with the Nebulas technical team,
and community members. NTC encourages the community to disclose security vulnerabilities
via the process described below, and play a role in building the Nebulas ecosystem, thereby
receiving bounties, and partaking in the evolution of the Nebulas ecosystem.

Bug Category

The Bug Bounty Program divides the bug bounties into 2 categories, common bug bounty
and special bug bounty. The common bugs include vulnerabilities discovered in Nebulas main-
net, Nebulas testnet, nebPay, Web wallet, neb.js and others, while the special bugs include
vulnerabilities found in the inter-contract call function, etcetera.

Eligibility

The Nebulas Technical Committee will evaluate reward sizes according to the severity
calculated by OWASP Risk Rating Method based on Impact and Likelihood. However, final
rewards are determined at the sole discretion of the committee.

Image 1

Impact:

• High: Bugs affecting asset security.

• Medium: Bugs affecting system stability.

• Low: Other bugs that do not affect asset security and do not affect system stability.

Likelihood:

• High: The bug can be discovered by anyone who performs an operation, regardless of
whether or not the bug has been found.

• Medium: Only certain people can discover it (such as a bug that only developers en-
counter, ordinary users are not affected.)

2.4. Get Involved 6

https://go.nebulas.io/search?q=wiki
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

nebulas Documentation, ìűIJìŃIJ 1.0

• Low: Covers less than 1% specific population, such as certain rare Android models; or
any other exceptional cases.

Amount:

To ensure the bug reporter obtains a stable expected reward, the amount in US dollars will
be issued in equivalent NAS. The reward amount is divided into 5 categories:

• Critical: US$1,000 or more (No upper limit)

• High: US$500 or more

• Medium: US$250 or more

• Low: US$100 or more

• Improvement: US$30 or more

Note: The Nebulas testnet special vulnerability reward (such as one for testnet inter-
contract call function) has been increased accordingly, and the equivalent US dollars are issued
in NAS.

Report A Bug

Please send your bug report via this link.

Things to keep in mind:

1. Please ensure the accuracy and clarity of the content, because the reward evaluation will
be based on the content submitted in this form.

2. If many people discover the same bug, then their report submissions in chronological
order will determine their reward. Community users are welcome to discuss the issues
of bugs, but the discussion itself is not considered a report, therefore a report form must
still be submitted.

Additional notes:

1. The Nebulas Bug Bounty Program is long-standing. The Nebulas Technical Committee
reserves the right to final interpretation of this program, and the rights to adjust or cancel
the reward scope, eligibility, and amount.

2. The Nebulas Technical Committee will confirm and evaluate the bug report after its sub-
mission. The evaluation time will depend on the severity of the problem and the difficulty
of its resolution. The result of the evaluation will be sent to its reporter by email as soon
as possible.

3. To avoid the exploitation of bugs, reporters are required to submit the bug bounty appli-
cation using the proper forms.

2.4. Get Involved 7

https://goo.gl/forms/5ysl61Mjpn6yDEuN2
https://docs.google.com/forms/d/e/1FAIpQLScaCeODU26maPJIuyCkX6Lsa0A5Xi2AZ_z-mvKlHmd89_CaXQ/viewform

nebulas Documentation, ìűIJìŃIJ 1.0

4. Reporters shall keep the bugs non-public and confidential until 30 days after the bug
submission to Nebulas, and shall not disclose the bugs to any third party. Such confiden-
tiality time limit can be extended by Nebulas unilaterally. If reporters disclose the bugs
to any third party and cause any harm to Nebulas or NebulasâĂŹ users, reporters shall be
responsible for the compensation for all the losses and damage.

5. The Nebulas Technical Committee encourages community members to converse with the
Nebulas technical team and other community members in the Nebulas public discussion
group. We also encourage our community members to join us in fixing these bugs. Join
our Nebulas maillist!

The Nebulas NAT Bug Bounty Program

NAT includes about 7 different smart contracts.

For bugs pertaining the NAT smart contracts, you may go here to claim your bounty. Do
note that you will still have to fill in the following form detailing your bug, after claiming, in
order to become elligible for the bounty.

The smart contracts can be updated at any time. They are listed below:

multisig: n1orrpFGmcQSvGrbKTD7RHweTPe61ut7svw

NAT NRC20: n1mpgNi6KKdSzr7i5Ma7JsG5yPY9knf9He7

distribute: n1uBbtFZK3Acs2T6JUMv6bSAvS6U6nnur6j

pledge_proxy: n1obU14f6Cp4Wv7zANVbtmXKNkpKCqQDgDM

pledge: n1zmbyLPCt2i8biKm1tNRwgAW3mhyKUtEpW

vote: n1pADU7jnrvpPzcWusGkaizZoWgUywMRGMY

NR_DATA: n21KaJxgFw7gTHR9A5VFYHsQrWdL61dCqvK

2.4.4 WhatâĂŹs Nebulas

Nebulas: Next Generation Public Blockchain

Nebulas is aiming to build a continuously improving ecosystem.

Nebulas is a next-generation public blockchain. It introduces Nebulas Rank (NR), a
new measure of value for every unit of the blockchain universe, like addresses, DApps and
smart contracts. Based on NR, it involves Nebulas Incentive (NI), which motivates developers
with Developer Incentive Protocol, and users with the Proof of Devotion consensus algorithm.
Moreover, it proposes Nebulas Force (NF), which gives the blockchain and smart contracts
within it a self-evolving capacity. In unison, NR, NI, and NF produce a continuously im-
proving and expanding blockchain ecosystem, using the principles contained in the Nebulas
Governance article to guide its evolution.

There are three technical features: value ranking, self-evolution, and native incentive.

2.4. Get Involved 8

https://lists.nebulas.io/cgi-bin/mailman/listinfo
https://lists.nebulas.io/cgi-bin/mailman/listinfo
https://go.nebulas.io/project/147
https://docs.google.com/forms/d/e/1FAIpQLScaCeODU26maPJIuyCkX6Lsa0A5Xi2AZ_z-mvKlHmd89_CaXQ/viewform
nebulas-governance/README.html
nebulas-governance/README.html

nebulas Documentation, ìűIJìŃIJ 1.0

Facing the opportunity and challenge as above, we aim to create a self-evolving blockchain
system based on value incentive.

Principles

The Nebulas blockchain has three major principles:

Nebulas Rank (NR)

Nebulas Rank (NR) is an open source ranking algorithm used to measure the influence of
relationships among addresses, smart contracts, and distributed applications (DApps). It helps
users utilize information within the ever-increasing amount of data on all blockchains, but it
also helps developers to use our search framework directly in their own applications.

On Nebulas, we measure value regarding:

• Liquidity

Finance is essentially the social activities which optimize social resources via capital liq-
uidity and in turn promotes economic development. Blockchains establish a value network in
which the financial assets can flow. Daily volume of Bitcoin and Ethereum, which are most
familiar to us, already exceeds $1 billion. From this data, we can see that the higher the trans-
action volume and transaction scale, the higher the liquidity. As a consequence of this, higher
liquidity will increase the quantity of transactions and enhance the value. That will further
strengthen the value of the financial assets, creating a complete positive feedback mechanism.
Therefore liquidity, i.e. transaction frequency and scale, is the first dimension that NR mea-
sures.

• Propagation

Social platforms like WeChat and Facebook have almost 3 billion active users per month.
Social platformsâĂŹ rapid user growth is a result of the reflection of existing social networks
and stronger viral growth. In particular, viral transmission, i.e. speed, scope, depth of infor-
mation transmission and linkage, is the key index to monitor the quality of social networks and
user growth. In the blockchain world, we can see the same pattern. Powerful viral propagation
indicates scope and depth of asset liquidity, which can promote its asset quality and asset scale.
Thus, viral transmission, i.e. scope and depth of asset liquidity, is the second dimension that
NR measures.

• Interoperability

During the early stages of the internet, there were only basic websites and private infor-
mation. Now, information on different platforms can be forwarded on the network, and isolated
data silos are gradually being broken. This trend is the process of identifying higher dimen-
sional information. From our point of view, the world of blockchains shall follow a similar
pattern, but its speed will be higher. The information on usersâĂŹ assets, smart contracts, and
DApps will become richer, and the interaction of higher dimensional information shall be more
frequent, thus better interoperability shall become more and more important. Therefore, the
third dimension measured by the NR is interoperability.

2.4. Get Involved 9

nebulas Documentation, ìűIJìŃIJ 1.0

Based on the aforementioned dimensions, we started constructing NebulasâĂŹ NR sys-
tem by drawing from richer data, building a better model, digging up more diversified value
dimensions, and establishing a measure of value in the blockchain world.

Nebulas Force (NF)

A series of basic protocols such as the NR, the PoD, and the DIP shall become a part of the
blockchain data. With the growth of data on Nebulas, these basic protocols will be upgraded,
which will avoid fractures between developers and community, as well as a âĂIJforkâĂİ. We
call this fundamental capability of our blockchain âĂIJNebulas ForceâĂİ (NF).

As the Nebulas community grows, NF and basic protocolsâĂŹ update ability shall be open
to the community. According to usersâĂŹ NR weight and the community voting mechanism,
NebulasâĂŹ evolution direction and its update objectives will be determined by the community.
With the help of NFâĂŹs core technology and its openness, Nebulas will have an ever-growing
evolutive potential and infinite evolving possibilities.

Nebulas Incentive (NI)

The Nebulas Incentive includes Proof of Devotion (PoD) and the Developer Incentive
Protocol (DIP).

Proof-of-Devotion (PoD)

Based on the NebulasâĂŹ NR system, we shall adopt the PoD (Proof-of-Devotion) con-
sensus algorithm. PoD gives an âĂIJinfluentialâĂİ user of the Nebulas blockchain an oppor-
tunity to become a bookkeeper and receive NebulasâĂŹ block rewards and transactional fees
as revenue, which will in turn encourage them to continuously contribute to the stability and
security of Nebulas.

Developer Incentive Protocol (DIP)

On Nebulas, we proposed the concept of DIP (Developer Incentive Protocol) for devel-
opers of smart contracts and DApps. DIPâĂŹs core concept: in the interval of pre-specified
blocks, for those developers whose smart contracts and DApps were deployed online during the
most recent interval, with a NR value higher than a specified threshold, DIP shall reward them
the corresponding developer incentives (NAS token), and these incentives shall be recorded
on blocks by bookkeepers. With the DIPâĂŹs positive incentive mechanism, more and more
developers will get incentives to create valuable smart contracts and DApps, which will help to
build a positive feedback ecosystem for the developer community.

2.4. Get Involved 10

nebulas Documentation, ìűIJìŃIJ 1.0

Nebulas Community Governance

Orange Paper

The Nebulas Orange Paper released on April 30 of 2019 highlights how Nebulas can use
its unique and innovative technology to manage public assets on the chain in order to achieve
its vision: âĂIJTo explore a new decentralized collaboration model, implement a decentralized
autonomous organization that provides positive incentives and can self-evolve (Decentralized
Autonomous Organization, DAO).âĂİ

The tenets upon which Nebulas’ governance is based are as follows:

1. Organizational structure and supervision mechanism: Nebulas Community Groups will
operate independently but are mutually constrained by one another: Nebulas Coun-
cil, Nebulas Foundation, Nebulas Technical CommitteeâĂŁâĂŤâĂŁarticulating its basic
composition, powers and obligations;

2. On-chain Collaboration: Nebulas community project introduction, âĂIJNAT On-chain
votingâĂİ will achieve community collaboration and system upgrade process;

3. Economies and Incentives: The design of the on-chain voting economy and how the
economy provides positive incentives to each community member during Nebulas gov-
ernance.

Learn more about Nebulas’ Governance by reading our Orange Paper here.

The NAT Token

NAT is Nebulas‘ governance NRC20 token derived from the Nebulas Rank and powers
the Nebulas on-chain voting system. Its total supply is capped at 100 billion.

Initially, 0 NAS voting was used. One address would be created per voting option, and a
user would transfer 0 NAS to the corresponding address in order to vote. To count the votes
for referenda where a wallet can only vote a single time, the transfers are parsed, duplicate
addresses are merged, and then the number of transactions are counted. It is a very limited
voting system.

The NAT on-chain voting system has several ways to target the weaknesses of the 0 NAS
voting system.

• Introduces the possibility of weighted voting for special types of elections.

• Creates incentives to voting in the form of NAT rewards.

• Individuals‘ voting power is determined by their Nebulas Rank and their involvement
with the Nebulas community and ecosystem.

• Protection from bad actors due to vastly higher supply (compared to NAS).

Note: NAT transferred will be burned.

For more in-depth information, read the Nebulas Governance Orange Paper.

2.4. Get Involved 11

https://wiki.nebulas.io/en/latest/whats-nebulas/nebulas-governance/nat.html
https://wiki.nebulas.io/en/latest/whats-nebulas/nebulas-governance/nat.html
https://nebulas.io/docs/NebulasOrangepaper.pdf
https://nebulas.io/docs/NebulasOrangepaper.pdf

nebulas Documentation, ìűIJìŃIJ 1.0

How to Obtain NAT

There are a myriad of ways to obtain NAT.

• Via airdrops: NAT airdrops are conducted every week and are based on one‘s Nebulas
Rank. To calculate how many tokens you will receive from the airdrops consider reading
this article.

• Via pledging: pledging NAS will allow you to receive NAT tokens for as long as the
NAS tokens are locked in a smart contract. Cancelling your pledge will return your NAS
tokens back to your wallet but you will stop receiving NAT.

• Via voting or Nebulas Rank: if you have a non-zero Nebulas Rank you are elligible to
receive voting incentives. Currently, the incentive index is set at 10. Thus, the number of
voting incentives you will receive is equal to 10 times your Nebulas Rank that week, or
10 times the number of NAT that was sent out of that address for the week, whichever is
lower.

Learn More

Where to vote

Go.Nebulas.io Proposals.

Active nebulas.io Ballots.

Useful Links

nebulas.io NAT‘s Main Page.

Why NAT is a fundamental component of the Nebulas ecosystem.

NAS on-chain voting starts!

Three minutes to take you into the world of NAT.

Participate in Nebulas ecosystem voting & receive NAT incentives!

How to obtain NATâĂŁâĂŤâĂŁPart 1: How to Pledge your NAS.

How to obtain NATâĂŁâĂŤâĂŁPart 2: How to Pledge your NAS via offline mode.

How to obtain NATâĂŁâĂŤâĂŁPart 3: Receiving NAT incentives & how to improve your
NR.

How to receive NAT without a Nebulas Rank.

Value ranking

To enable value discovery in blockchain, Nebulas Rank measures multidimensional data
in the blockchain world and powers the decentralized search framework.

2.4. Get Involved 12

https://medium.com/nebulasio/check-your-nr-see-how-many-tokens-you-can-receive-from-the-nat-airdrop-a45b0efdd697
https://go.nebulas.io/votes?page=1&byCategory=0&byStatus=0&bySort=0
https://nebulas.io/nat-vote.html
https://nebulas.io/nat.html
https://medium.com/nebulasio/why-nat-is-a-fundamental-component-of-the-nebulas-ecosystem-1a8b07c0cf58
https://medium.com/nebulasio/nat-onchain-voting-starts-1d193c974f7a
https://www.reddit.com/r/nebulas/comments/bv3t3j/three_minutes_to_take_you_into_the_world_of_nat/?ref=readnext
https://medium.com/nebulasio/participate-in-nebulas-ecosystem-voting-receive-nat-incentives-7235fdc65439
https://medium.com/nebulasio/want-to-get-nat-you-need-to-prepare-the-following-on-may-5th-part-1-465224f23af5
https://medium.com/nebulasio/how-to-obtain-nat-part-2-how-to-pledge-your-nas-via-offline-mode-add3172d940c
https://medium.com/nebulasio/how-to-obtain-nat-part-3-receiving-nat-incentives-how-to-improve-your-nr-ac28b43cf9f1
https://medium.com/nebulasio/how-to-obtain-nat-part-3-receiving-nat-incentives-how-to-improve-your-nr-ac28b43cf9f1
https://medium.com/nebulasio/how-to-receive-nat-without-a-nebulas-rank-5d8cbd931cb9

nebulas Documentation, ìűIJìŃIJ 1.0

Self-evolution

To avoid the damage caused by forking to the blockchain, Nebulas Force enables rapid
iteration and upgradability to its blockchain without the need for hard forks.

Native incentives

With forward-looking incentive and consensus mechanisms, the Nebulas Incentive re-
wards developers and users who contribute to the sustainability and growth of the ecosystem.

This is an excerpt of the Nebulas Non-technical Whitepaper.

If you want to know more about Nebulas, please subscribe to the official blog, or visit our
website: nebulas.io. Read our Non-technical White Paper (English), Technical White Paper
(English).

2.4.5 Go-Nebulas

Nebulas Technical Committee

Nebulas Nova Tech Tradeoffs (11.21.2018)

Summary

1. The process to submit IR (LLVM Intermediate Representation) and who can submit IR
(LLVM Intermediate Representation)

2. The time window for NR & DIP

3. How much NAS for DIP & how to distribute NAS for DIP

Detailed minutes:

1. The process to submit IR and who can submit IR

1. Nebulas Nova will use an auth_table to decide whose IR can be executed and the lifetime
of each IR.

2. auth_table is a set of tuples, and each tuple includes IR name, submitterâĂŹs address,
the valid start and end height for the submitter.

3. Only the auth_adminâĂŹs auth_table can update in Nebulas Nova. The auth_admin
account should be created by a cold wallet. Each IR should be managed by different
accounts. Nebulas Technical Committee will further discuss the community governance
details with the community. Before the we finalized the governance details , the Nebulas
team will not recklessly open the IR submission access.The NBRE only executes several

2.4. Get Involved 13

https://nebulas.io/
https://nebulas.io/docs/NebulasWhitepaper.pdf
https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf

nebulas Documentation, ìűIJìŃIJ 1.0

predefined IRs, like checking the auth_table, and the IRs defined in auth_table. Other
IRs will not be executed

4. However, each node may change the code. And that could be the auth_admin account,
and the auth_table. Consequently, it may change the behaviors in NBRE, and the node
shall fail to sync data with the main-net

2. The time window for NR & DIP

1. In the yellow paper introducing Nebulas Rank, we have mentioned that to avoid the
affect of loop attack, we will remove the forwarding loop before we calculate the In-
and-Out degree for the transaction graph, thus the time-window is important for anti-
manipulation.

2. If the time-window is too short, there may be more cheating.

3. For now, we suggest the time window in several days.

4. We should monitor the cheating status, and adjust the time-window if necessary.

5. time window for DIP should be much more larger than the time window of NR, for now,
we suggests 7 days

3. How much NAS for DIP & how to distribute NAS for DIP

1. For each month, we suggest around 500 NAS in total for now, and adjust the amount
subject to the DIP feedback in the future, the winners shall be relatively stable, so a
winner will get reward in several months.

2. We will have a special account for distributing NAS for DIP. The account can only send
special transactions for DIP.

About Nebulas Technical Committee

• The Nebulas Technical Committee adheres to the spirit of openness, sharing, and trans-
parency, and is committed to promoting the decentralization, and the community of the
research and development of the Nebulas technology. Blockchain technology opens
up possibilities for building new and self-motivated open source communities. Nebu-
lasâĂŹ technical concepts unclude mechanisms for evaluation, self-evolution, and self-
incentives, which provide a guarantee for building a world of decentralized collaboration.
The Nebulas Technical Committee will fully promote the realization of the Nebulas vi-
sion.*

• Subscribe to nebulas mailing list and learn the latest progress of Nebulas: mailing list*

• For more info, please visit Nebulas official website.*

Papers

• The Nebulas Technical White Paper.

2.4. Get Involved 14

https://lists.nebulas.io/cgi-bin/mailman/listinfo
https://www.nebulas.io/index.html
https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf

nebulas Documentation, ìűIJìŃIJ 1.0

• The Nebulas Non-technical White Paper.

• The Nebulas Yellow Paper âĂŤ the Nebulas Rank. You can access the repository here.

• The Nebulas Mauve Paper âĂŤ the Developer Incentive Protocol. You can access the
repository here.

• The Nebulas Orange Paper âĂŤ Nebulas Governance. You can access the repository here.

As always, translations and bug reports are always welcome. Learn more about how to
contribute.

Design Overview

TODO: More features described in our whitepaper, such as NR, PoD, DIP and NF,
will be integrated into the framework in later versions very soon.

Core Dataflow

Here is a core workflow example to explain how Nebulas works in current version. For
each Nebulas node, it keeps receiving blocks or transactions from network and mining new
block locally.

2.4. Get Involved 15

https://nebulas.io/docs/NebulasWhitepaper.pdf
https://nebulas.io/docs/NebulasYellowPaper.pdf
https://github.com/nebulasio/nr-report
https://nebulas.io/docs/NebulasMauvePaper.pdf
https://github.com/nebulasio/dip-report
https://nebulas.io/docs/NebulasOrangepaper.pdf
https://github.com/nebulasio/governance-paper
https://wiki.nebulas.io/en/latest/how-to-contribute.html
https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf

nebulas Documentation, ìűIJìŃIJ 1.0

More Details

Blockchain

Model

Nebulas use accounts model instead of UTXO model. The execution of transactions will
consume gas.

2.4. Get Involved 16

nebulas Documentation, ìűIJìŃIJ 1.0

Data Structure

Block Structure
+---------------+----------------+--------------+
| blockHeader | transactions | dependency |
+---------------+----------------+--------------+
blockHeader: header info
transactions: transactions array
dependency: the dependency relationship among transactions

Block Header Structure
+-----------+--------+--------------+------------+-------------+----
→˓---+--------+
| chainid | hash | parentHash | coinbase | timestamp |
→˓alg | sign |
+-----------+--------+--------------+------------+-------------+----
→˓---+--------+
+-------------+-----------+--------------+-----------------+
| stateRoot | txsRoot | eventsRoot | consensusRoot |
+-------------+-----------+--------------+-----------------+
chainid: chain identity the block belongs to
hash: block hash
parentHash: parent block hash
coinbase: account to receive the mint reward
timestamp: the number of nanoseconds elapsed since January 1, 1970
→˓UTC
alg: the type of signature algorithm
sign: the signature of block hash
stateRoot: account state root hash
txsRoot: transactions state root hash
eventsRoot: events state root hash
consensusRoot: consensus state, including proposer and the dynasty
→˓of validators

Transaction Structure
+-----------+--------+--------+------+---------+---------+----------
→˓---+
| chainid | hash | from | to | value | nonce |
→˓timestamp |
+-----------+--------+--------+------+---------+---------+----------
→˓---+
+--------+------------+------------+
| data | gasPrice | gasLimit |
+--------+------------+------------+
chainid: chain identity the block belongs to
hash: transaction hash
from: sender's wallet address
to: receiver's wallet address
value: transfer value
nonce: transaction nonce

2.4. Get Involved 17

nebulas Documentation, ìűIJìŃIJ 1.0

timestamp: the number of seconds elapsed since January 1, 1970 UTC
alg: the type of signature algorithm
sign: the signature of block hash
data: transaction data, including the type of transaction(binary
→˓transfer/deploy smart contracts/call smart contracts) and payload
gasPrice: the price of each gas consumed by the transaction
gasLimit: the max gas that can be consumed by the transaction

Blockchain Update

In our opinion, Blockchain only needs to care about how to process new blocks to grow
up safely and efficiently. What‘s more, Blockchain can only get new blocks in the following
two channels.

A new block from network

Because of the unstable network latency, we cannot make sure any new block received can
be linked to our current Chain directly. Thus, we need the Blocks Pool to cache new blocks.

A new block from local miner

At first, we need the Transactions Pool to cache transactions from network. Then, we
wait for a new block created by local Consensus component, such as DPoS.

No matter where a new block comes from, we use the same steps to process it as following.

2.4. Get Involved 18

nebulas Documentation, ìűIJìŃIJ 1.0

World State

Every block contains the current world state, consist of following four states. They are all
maintained as Merkle Trees.

2.4. Get Involved 19

nebulas Documentation, ìűIJìŃIJ 1.0

Accounts State

All accounts in current block are stored in Accounts State. Accounts are divided into two
kinds, normal account & smart contract account.

Normal Account, including

• wallet address

• balance

• nonce: account‘s nonce, it will increment in steps of 1

Smart Contract AccountïijŇ including

• contract address

• balance

• birth place: the transaction hash where the contract is deployed

• variables: contains all variables‘ values in the contract

Transactions State

All transactions submitted on chain are storage in Transactions State.

Events State

While transactions are executed, many events will be triggered. All events triggered by
transactions on chain are stored in Events State.

Consensus State

The context of consensus algorithm is stored in consensus state.

As for DPoS, the consensus state includes

• timestamp: current slot of timestamp

• proposer: current proposer

• dynasty: current dynasty of validators

Serialization

We choose Protocol Buffers to do general serialization in consideration of the following
benefits:

• Large scale proven.

2.4. Get Involved 20

nebulas Documentation, ìűIJìŃIJ 1.0

• Efficiency. It omits key literals and use varints encoding.

• Multi types and multilangue client support. Easy to use API.

• Schema is good format for communication.

• Schema is good for versioning/extension, i.e., adding new message fields or deprecating
unused ones.

Specially, we use json to do serialization in smart contract codes instead of protobuf for
the sake of readability.

Synchronization

Sometimes we will receive a block with height much higher than its current tail block.
When the gap appears, we need to sync blocks from peer nodes to catch up with them.

Nebulas provides two method to sync blocks from peers: Chunks Downloader and Block
Downloader. If the gap is bigger than 32 blocks, we‘ll choose Chunk Downloader to download
a lot of blocks in chunks. Otherwise, we choose Block Downloader to download block one by
one.

Chunks Downloader

Chunk is a collection of 32 successive blocks. Chunks Downloader allows us to download
at most 10 chunks following our current tail block each time. This chunk-based mechanism
could help us minimize the number of network packets and achieve better safety.

The procedure is as following,

1. A sends its tail block to N remote peers.
2. The remote peers locate the chunk C that contains A's tail block.

Then they will send back the headers of 10 chunks, including the
→˓chunk C and 9 C's subsequent chunks, and the hash H of the 10
→˓headers.
3. If A receives >N/2 same hash H, A will try to sync the chunks
→˓represented by H.
4. If A has fetched all chunks represented by H and linked them on
→˓chain successfully, Jump to 1.

In steps 1~3, we use majority decision to confirm the chunks on canonical chain. Then we
download the blocks in the chunks in step 4.

Note: ChunkHeader contains an array of 32 block hash and the hash of the array.
ChunkHeaders contains an array of 10 ChunkHeaders and the hash of the array.

Here is a diagram of this sync procedure:

2.4. Get Involved 21

nebulas Documentation, ìűIJìŃIJ 1.0

Block Downloader

When the length gap between our local chain with the canonical chain is smaller than 32,
we‘ll use Block downloader to download the missing blocks one by one.

The procedure is as following,

1. C relays the newest block B to A and A finds B's height is
→˓bigger than current tail block's.
2. A sends the hash of block B back to C to download B's parent
→˓block.
3. If A received B's parent block B', A will try to link B' with A
→˓'s current tail block.

If failed again, A will come back to step 2 and continue to
→˓download the parent block of B'. Otherwise, finished.

2.4. Get Involved 22

nebulas Documentation, ìűIJìŃIJ 1.0

This procedure will repeat until A catch up with the canonical chain.

Here is a diagram of this download procedure:

Merkle Patricia Tree

Basic: Radix Tree

Reference: https://en.wikipedia.org/wiki/Radix_tree

A Radix Tree using address as the key looks like below:

• Addresses are represented as Hex Characters

• Each node in the Tree is a 16-elements array, 16 branch-slots(0123...def)

• leaf node: value can be any binary data carried by the address

• non-leaf node: value is the hash value calculated based on the childrenâĂŹs data

As for a 160-bits address, the max height of the tree is 40

2.4. Get Involved 23

https://en.wikipedia.org/wiki/Radix_tree

nebulas Documentation, ìűIJìŃIJ 1.0

Problems: much space for a single entry 40 steps for each lookup

Advanced: Merkle Patricia Tree

Reference: https://github.com/ethereum/wiki/wiki/Patricia-Tree, http://gavwood.
com/Paper.pdf

In order to reduce the storage of Radix Tree. The nodes in Merkle Patricia Tree are divided
into three kinds,

• extension node: compress nodes using common prefix

• leaf node: compress nodes using unique suffix

• branch node: same as node in Radix Tree

How to store Merkle Patricia Tree

Key/Value Storage

hash(value) = sha3(serialize(value))

2.4. Get Involved 24

https://github.com/ethereum/wiki/wiki/Patricia-Tree
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

nebulas Documentation, ìűIJìŃIJ 1.0

key = hash(value)

How to update Merkle Patricia Tree

Query

DFS from top to bottom

Update, Delete or Insert

1.Query the node from top to bottom

2.update the hash along the path from bottom to top

Performance Each operation costs O(log(n))

How to verify using Merkle Patricia Tree

Theorems

1.Same merkle trees must have same root hash.

2.Different merkle trees must have different root hash.

Using the theorems, we can verify the result of the execution of transactions.

Quick Verification

A light client, without sync huge transactions, can immediately determine the exact bal-
ance and status of any account by simply asking the network for a path from the root to the
account node.

Consensus

We think each consensus algorithm can be described as the combination of State Machine
and Fork Choice Rules.

DPoS(Delegate Proof-of-Stake)

Notice For Nebulas, the primary consensus algorithm should be PoD, the DPoS
algorithm is just a temporary solution. After the formal verification of PoD algo-
rithm, we will transition mainnet to PoD. All witness (bookkeeper/miner) of DPoS

2.4. Get Involved 25

nebulas Documentation, ìűIJìŃIJ 1.0

are now accounts officially maintained by Nebulas. We will make sure a smooth
transition from DPoS to PoD. We will create new funds to manage all the rewards
of bookkeeping. And we will NOT sell those NAS on exchanges. All NAS will be
used for building the Nebulas ecosystem, for example, rewarding DApp developers
on Nebulas. And we will provide open access to all the spending of these rewards
periodically.

As for the DPoS in Nebulas, it can also be decribed as a state machine.

State Machine

Fork Choice Rules

1. Always choose the longest chain as the canonical chain.

2. If A and B has the same length, we choose the one with smaller hash.

PoD (Proof-of-Devotion)

Here is a draft of PoD. The research on PoD is ongoing here.

2.4. Get Involved 26

https://github.com/nebulasio/research/tree/master/pod

nebulas Documentation, ìűIJìŃIJ 1.0

State Machine

Fork Choice Rules

1. Always to choose the chain with highest sum of commit votes.

2. If A and B has the same length, we choose the one with smaller hash.

Transaction Process Diagram

When a transaction is submitted, it is necessary to check the chain in the transaction.
Transactions that are submitted externally or have been packaged into the block are somewhat
different when doing validation.

New Transaction Process (from network, rpc)

Transactions submitted through an RPC or other node broadcast.

• Api SendRawTransaction Verification below steps when exist fail, then return err

• check whether fromAddr and toAddr is valid (tx proto verification)

• check len of Payload <= MaxDataPayLoadLength (tx proto verification)

• 0 < gasPrice <= TransactionMaxGasPrice and 0 < gasLimit <= TransactionMaxGas (tx
proto verification)

• check Alg is SECP256K1 (tx proto verification)

• chainID Equals, Hash Equals, Sign verify??; fail and drop;

2.4. Get Involved 27

nebulas Documentation, ìűIJìŃIJ 1.0

• check nonceOfTx > nonceOfFrom

• check Contract status is ExecutionSuccess if type of tx is TxPayloadCallType, check
toAddr is equal to fromAddr if type of tx is TxPayloadDeployType

• Transaction pool Verification

• gasPrice >= minGasPriceOfTxPool & 0 < gasLimit <= maxGasLimitOfTxPool??; fail
and drop;

• chainID Equals, Hash Equals, Sign verify??; fail and drop;

Transaction in Block Process

The transaction has been packaged into the block, and the transaction is verified after
receiving the block.

• Packed

• Nonce Verification: nonceOfFrom +1 == nonceOfTx ??; nonceOfTx < nonceOfFrom +1
fail and drop, nonceOfTx > nonceOfFrom +1 fail and giveback to tx pool;

• check balance >= gasLimit * gasPrice ??; fail and drop;

• check gasLimit >= txBaseGas(MinGasCountPerTransaction +
dataLen*GasCountPerByte) ??; fail and drop;

• check payload is valid ??; fail and submit; gasConsumed is txBaseGas (all txs passed
the step tx will be on chain)

• check gasLimit >= txBaseGas + payloasBaseGas(TxPayloadBaseGasCount[payloadType])
??;fail and submit; gasConsumed is txGasLimit

• check balance >= gasLimit * gasPrice + value ??;fail and submit; gasConsumed is
txBaseGas + payloadsBaseGas

• transfer value from SubBalance and to AddBalance ??;fail and submit; gasConsumed is
txBaseGas + payloadsBaseGas

• check gasLimit >= txBaseGas + payloadsBaseGas + gasExecution ??;fail and submit;
gasConsumed is txGasLimit

• success submit gasConsumed is txBaseGas + payloadsBaseGas + gasExecution

• Verify

• check whether fromAddr and toAddr is valid (tx proto verification) ??; fail and submit;

• check len of Payload <= MaxDataPayLoadLength (tx proto verification) ??; fail and
submit;

• 0 < gasPrice <= TransactionMaxGasPrice and 0 < gasLimit <= TransactionMaxGas (tx
proto verification)

• check Alg is SECP256K1 (tx proto verification) ??; fail and submit;

• chainID Equals, Hash Equals, Sign verify??; fail and drop;

2.4. Get Involved 28

nebulas Documentation, ìűIJìŃIJ 1.0

• Next steps like Transaction Packed in Block Process.

Event functionality

The Event functionality is used to make users or developers subscribe interested events.
These events are generated during the execution of the blockchain, and they record the key
execution steps and execution results of the chain. To query and verify the execution results of
transactions and smart contracts, we record these two types of events into a trie and save them
to the chain.

Event structure:

type Event struct {
Topic string // event topic, subscribe keyword
Data string // event content, a json string

}

After a event is generated, it will be collected for processing in eventEmitter. Users can
use the emitter subscription event. If the event is not subscribed, it will be discarded, and for
the event that has been subscribed, the new event will be discarded because of the non-blocking
mechanism, if the channel is not blocked in time.

Events list:

• TopicNewTailBlock

• TopicRevertBlock

• TopicLibBlock

• TopicPendingTransaction

• TopicTransactionExecutionResult

• EventNameSpaceContract

Event Reference

TopicNewTailBlock

This event occurs when the tail block of the chain is updated.

• Topic:chain.newTailBlock

• Data:

– height: block height

– hash: block hash

– parent_hash: block parent hash

2.4. Get Involved 29

https://github.com/nebulasio/go-nebulas/blob/master/core/event.go
event.md#topicnewtailblock
event.md#topicrevertblock
event.md#topiclibblock
event.md#topicpendingtransaction
event.md#topictransactionexecutionresult
event.md#eventnamespacecontract

nebulas Documentation, ìűIJìŃIJ 1.0

– acc_root: account state root hash

– timestamp: block timestamp

– tx: transaction state root hash

– miner: block miner

TopicRevertBlock

This event occurs when a block is revert on the chain.

• Topic:chain.revertBlock

• Data: The content of this topic is like TopicNewTailBlock data.

TopicLibBlock

This event occurs when the latest irreversible block change.

• Topic:chain.latestIrreversibleBlock

• Data: The content of this topic is like TopicNewTailBlock data.

TopicPendingTransaction

This event occurs when a transaction is pushed into the transaction pool.

• Topic:chain.pendingTransaction

• Data:

– chainID: transaction chain id

– hash: transaction hash

– from: transaction from address string

– to: transaction to address string

– nonce: transaction nonce

– value: transaction value

– timestamp: transaction timestamp

– gasprice: transaction gas price

– gaslimit: transaction gas limit

– type: trsnaction type

2.4. Get Involved 30

event.md#topicnewtailblock
event.md#topicnewtailblock

nebulas Documentation, ìűIJìŃIJ 1.0

TopicTransactionExecutionResult

This event occurs when the end of a transaction is executed. This event will be recorded
on the chain, and users can query with RPC interface GetEventsByHash.

This event records the execution results of the transaction and is very important.

• Topic:chain.transactionResult

• Data:

– hash: transaction hash

– status: transaction status, 0 failed, 1success, 2 pending

– gasUsed: transaction gas used

– error: transaction execution error. If the transaction is executed successfully, the
field is empty.

EventNameSpaceContract

This event occurs when the contract is executed. When the contract is executed, the con-
tract can record several events in the execution process. If the contract is successful, these
events will be recorded on the chain and can be subscribed, and the event of the contract will
not be recorded at the time of the failure. This event will also be recorded on the chain, and
users can query with RPC interface GetEventsByHash.

• Topic:chain.contract.[topic] The topic of the contract event has a prefix
chain.contract., the content is defined by the contract writer.

• Data: The content of contract event is defined by contract writer.

Subscribe

All events can be subscribed and the cloud chain provides a subscription RPC interface
Subscribe. It should be noted that the event subscription is a non-blocking mechanism. New
events will be discarded when the RPC interface is not handled in time.

Query

Only events recorded on the chain can be queried using the RPC interface GetEventsBy-
Hash. Current events that can be queried include:

• TopicTransactionExecutionResult

• EventNameSpaceContract

2.4. Get Involved 31

https://github.com/nebulasio/wiki/blob/master/rpc.md#geteventsbyhash
https://github.com/nebulasio/wiki/blob/master/rpc.md#geteventsbyhash
https://github.com/nebulasio/wiki/blob/master/rpc.md#subscribe
https://github.com/nebulasio/wiki/blob/master/rpc.md#geteventsbyhash
https://github.com/nebulasio/wiki/blob/master/rpc.md#geteventsbyhash
event.md#topictransactionexecutionresult
event.md#eventnamespacecontract

nebulas Documentation, ìűIJìŃIJ 1.0

Transaction Gas

In Nebulas, either a normal transaction which transfer balance or a smart contract deploy
& call burns gas, and charged from the balance of from address. A transaction contains two
gas parameters gasPrice and gasLimit :

• gasPrice: the price of per gas.

• gasLimit: the limit of gas use.

The actual gas consumption of a transaction is the value: gasPrice * gasUsed, which
will be the reward to the miner coinbase. The gasUsed value must less than or equal to the
gasLimit. Transaction‘s gasUsed can be estimate by RPC interface estimategas and store
in transaction‘s execution result event.

Design reason

Users want to avoid gas costs when the transaction is packaged. Like Bitcoin and
Ethereum, Nebulas GAS is used for transaction fee, it have two major purposes:

• As a rewards for minter, to incentive them to pack transactions. The packaging of the
transaction costs the computing resources, especially the execution of the contract, so the
user needs to pay for the transaction.

• As a cost for attackers. The DDOS attach is quite cheap in Internet, black hackers hijack
user‘s computer to send large network volume to target server. In Bitcoin and Ethereum
network, each transaction must be paid, that significant raise the cost of attack.

Gas constitution

When users submit a transaction, gas will be burned at these aspects:

• transaction submition

• transaction data storage

• transaction payload addition

• transaction payload execution(smart contract execution)

In all these aspects, the power and resources of the net will be consumed and the miners
will need to be paid.

Transaction submition

A transaction‘s submition will add a transaction to the tail block. Miners use resources to
record the deal and need to be paid. It will burn a fixed number of gas, that would be defined
in code as the following:

2.4. Get Involved 32

https://github.com/nebulasio/wiki/blob/master/rpc.md#estimategas

nebulas Documentation, ìűIJìŃIJ 1.0

// TransactionGas default gas for normal transaction
TransactionGas = 20000

If the transaction verifies failed, the gas and value transfer will rollback.

Transaction data storage

When deploying a contract or call contract‘s method, the raw data of contract execution
save in the transaction‘s data filed, which cost the storage of resources on the chain. A formula
to calculate gas:

TransactionDataGas = 1

len(data) * TransactionDataGas

The TransactionDataGas is a fixed number of gas defined in code.

Different types of transactions‘ payload have different gas consumption when executed.
The types of transactions currently supported by nebulas are as follows:

• binary: The binary type of transaction allows users to attach binary data to trans-
action execution. These binary data do not do any processing when the transaction is
executed.

– The fixed number of gas defined 0.

• deploy & call: The deploy and call type of transaction allows users to deploy
smart contract on nebulas. Nebulas must start nvm to execute the contract, so these types
of transction must paid for the nvm start.

– The fixed number of gas defined 60.

Transaction payload execution(Smart contract deploy & call)

The binary type of transaction do not do any processing when the transaction is exe-
cuted, so the execution need not be paid.

When a smart contract deploys or call in transaction submition, the contract execution will
consume miner‘s computer resources and may store data on the chain.

• execution instructions: Every contract execution cost the miner‘s computer resources,
the v8 instruction counter calculates the execution instructions. The limit of execution
instructions will prevent the excessive consumption of computer computing power and
the generation of the death cycle.

• contract storage: The smart contract‘s LocalContractStorage which stor-
age contract objects also burn gas. Only one gas per 32 bytes is consumed when
stored(set/put), get or delete not burns gas.

The limit of contract execution is:

2.4. Get Involved 33

nebulas Documentation, ìűIJìŃIJ 1.0

gasLimit - TransactionGas - len(data) * TransactionDataGas -
→˓TransactionPayloadGasCount[type]

Gas Count Matrix

The gas count matrix of smart contract execution

| Expression | Sample Code | Binary Opt. | Load Opt. | Store Opt. | Return Opt. | Call
(inner) Opt. | Gas Count | | | | — | :— | —: | —: | —: | —: | —: | —: | | CallExpression | a(x, y) |
0 | 0 | 1 | 1 | 1 | 8 | | | | AssignmentExpression | x&=y | 1 | 0 | 1 | 0 | 0 | 3 | | | | BinaryExpression |
x==y | 1 | 0 | 0 | 1 | 0 | 3 | | | | UpdateExpression | x++ | 1 | 0 | 1 | 0 | 0 | 3 | | | | UnaryExpression |
x+y | 1 | 0 | 0 | 1 | 0 | 3 | | | | LogicalExpression | x | | y | 1 | 0 | 0 | 1 | 0 | 3 | | MemberExpression | x.y
| 0 | 1 | 0 | 1 | 0 | 4 | | | | NewExpression | new X() | 0 | 0 | 1 | 1 | 1 | 8 | | | | ThrowStatement | throw
x | 0 | 0 | 0 | 1 | 1 | 6 | | | | MetaProperty | new.target | 0 | 1 | 0 | 1 | 0 | 4 | | | | ConditionalExpression
| x?y:z | 1 | 0 | 0 | 1 | 0 | 3 | | | | YieldExpression | yield x | 0 | 0 | 0 | 1 | 1 | 6 | | | | Event | | 0 | 0 | 0 |
0 | 0 | 20 | | | | Storage | | 0 | 0 | 0 | 0 | 0 | 1 gas/bit | | |

Tips

In nebulas, the transaction pool of each node has a minimum and maximum gasPrice
and maximum gasLimit value. If transaction‘s gasPrice is not in the range of the pool‘s
gasPrice or the gasLimit greater than the pool‘s gasLimit the transaction will be refused.

Transaction pool gasPrice and gasLimit configuration:

• gasPrice

– minimum: The minimum gasPrice can be set in the configuration file. If the mini-
mum value is not configured, the default value is 20000000000(2*10^10).

– maximum: The maximum gasPrice is 1000000000000(10^12), transaction
pool‘s maximum configuration and transaction‘s gasPrice can‘t be overflow.

• gasLimit

– minimum: The transaction‘s minimum gasLimit must greater than zero.

– maximum: The maximum gasPrice is 50000000000(50*10^9), transaction
pool‘s maximum configuration and transaction‘s gasLimit can‘t be overflow.

Logs

Introduction

Nebulas provides two kinds of logs: console log & verbose log.

2.4. Get Involved 34

nebulas Documentation, ìűIJìŃIJ 1.0

Console Log

Console Log(CLog) is used to help you understand which job Neb is working on now,
including start/stop components, receive new blocks on chain, do synchronization and so on.

• CLog will print all logs to stdout & log files both. You can check them in your standard
output directly.

Nebulas console log statements

// log level can be `Info`,`Warning`,`Error`
logging.CLog().Info("")

Startup specifications

Nebulas start service should give a console log, the logs should before the service start.
The log format just like this:

logging.CLog().Info("Starting xxx...")

Stopping specifications

Nebulas stop service should give a console log, the logs should before the service stoped.
The log format just like this:

logging.CLog().Info("Stopping xxx...")

Verbose Log

Verbose Log(VLog) is used to help you understant how Neb works on current job, includ-
ing how to verifiy new blocks, how to discover new nodes, how to mint and so on.

• VLog will print logs to log files only. You can check them in your log folders if needed.

What‘r more, you can set your concerned level to VLog to filter informations. The level
filter follows the priority as Debug < Info < Warn < Error < Fatal.

Hookers

By default, Function hookers & FileRotate hookers are added to CLog & VLog both.

FunctionNameHooker

FunctionHooker will append current caller‘s function name & code line to the loggers.
The result looks like this,

2.4. Get Involved 35

nebulas Documentation, ìűIJìŃIJ 1.0

time=“2018-01-03T20:20:52+08:00“ level=info msg=“node init suc-
cess“ file=net_service.go func=p2p.NewNetManager line=137
node.listen=“[0.0.0.0:10001]“

FileRotateHooker

FileRotateHooker will split logs into many smaller segments by time. By default, all logs
will be rotated every 1 hour. The log folder looks like this,

neb-2018010415.log neb-2018010416.log neb.log -> /path/to/neb-2018010415.log

If you have any suggestions about logs, please feel free to submit issues on our wiki repo.
Thanks!

Nebulas Address Design

Nebulas address system is carefully designed. As you will see below, both account and
smart contract address are strings starting with a “n“, which could be thought of as our faith
Nebulas/NAS.

Account Address

Similar to Bitcoin and Ethereum, Nebulas also adopts elliptic curve algorithm as its basic
encryption algorithm for Nebulas accounts. The address is derived from public key, which is
in turn derived from the private key that encrypted with user‘s passphrase.Also we have the
checksum design aiming to prevent a user from sending Nas to a wrong user account acciden-
tally due to entry of several incorrect characters.

The specific calculation formula is as follows:

1. content = ripemd160(sha3_256(public key))
length: 20 bytes

+--------+--------+------------------+
2. checksum = sha3_256(| 0x19 + 0x57 | content |
→˓)[:4]

+--------+--------+------------------+
length: 4 bytes

+--------+---------+-----------------+------
→˓------+
3. address = base58(| 0x19 | 0x57 | content |
→˓checksum | ïijL’

+--------+---------+-----------------+------
→˓------+

length: 35 chars

0x57 is a one-byte “type code“ for account address, 0x19 is a one-byte fixed “padding“

2.4. Get Involved 36

https://github.com/nebulasio/wiki

nebulas Documentation, ìűIJìŃIJ 1.0

At this stage, Nebulas just adopts the normal bitcoin base58 encoding schema. A valid
address is like: n1TV3sU6jyzR4rJ1D7jCAmtVGSntJagXZHC

Smart Contract Address

Calculating contract address differs slightly from account, passphrase of contract sender
is not required but address & nonce. For more information, please check smart contract and
rpc.sendTransaction. Calculation formula is as follows:

1. content = ripemd160(sha3_256(tx.from, tx.nonce))
length: 20 bytes

+--------+--------+------------------+
2. checksum = sha3_256(| 0x19 | 0x58 + content |
→˓)[:4]

+--------+--------+------------------+
length: 4 bytes

+--------+---------+-----------------+--------
→˓----+
3. address = base58(| 0x19 | 0x58 | content |
→˓checksum | ïijL’

+--------+---------+-----------------+--------
→˓----+

length: 35 chars

0x58 is a one-byte “type code“ for smart contract address, 0x19 is a one-byte fixed
“padding“

A valid address is like: n1sLnoc7j57YfzAVP8tJ3yK5a2i56QrTDdK

DIP (TBD)

How to Join the Nebulas Mainnet

Introduction

The Nebulas Mainnet 2.0 (Nebulas Nova) has been released. This tutorial will teach you
how to join and work with the Nebulas Mainnet.

https://github.com/nebulasio/go-nebulas/tree/master

Build

The Nebulas Mainnet‘s executable file and dependant libraries need to be built first. Sev-
eral important modules are highlighted below:

• NBRE: The Nebulas Blockchain Runtime Environment is the platform for running Neb-
ulas Protocol Representation, such as the DIP, the NR, etcetera.

2.4. Get Involved 37

https://en.wikipedia.org/wiki/Base58
https://github.com/nebulasio/wiki/blob/master/tutorials/%5BEnglish%5D%20Nebulas%20101%20-%2003%20Smart%20Contracts%20JavaScript
https://github.com/nebulasio/wiki/blob/master/rpc.md#sendtransaction
https://github.com/nebulasio/go-nebulas/tree/master

nebulas Documentation, ìűIJìŃIJ 1.0

• NEB: The main process of the Nebulas Mainnet. NEB and NBRE run in standalone
processes, and communicate through IPC.

Details of building the modules can be found in tutorials.

Configuration

The Mainnet configuration files are in folder mainnet/conf, including

genesis.conf

All configurable information about genesis block is defined in genesis.conf, including

• meta.chain_id: chain identity

• consensus.dpos.dynasty: the initial dynasty of validators

• token_distribution: the initial allocation of tokens

Attention: DO NOT change the genesis.conf.

config.conf

All configurable information about runtime is defined in config.conf.

Please check the template.conf to find more details about the runtime configuration.

Tips: the official seed node info is as follows,

seed:["/ip4/52.2.205.12/tcp/8680/ipfs/
→˓QmQK7W8wrByJ6So7rf84sZzKBxMYmc1i4a7JZsne93ysz5","/ip4/52.56.55.
→˓238/tcp/8680/ipfs/QmVy9AHxBpd1iTvECDR7fvdZnqXeDhnxkZJrKsyuHNYKAh",
→˓"/ip4/13.251.33.39/tcp/8680/ipfs/
→˓QmVm5CECJdPAHmzJWN2X7tP335L5LguGb9QLQ78riA9gw3"]

API List

Main Endpoint:

• GetNebState : returns nebulas client info.

• GetAccountState: returns the account balance and nonce.

• Call: execute smart contract local, don‘t submit on chain.

• SendRawTransaction: submit the signed transaction.

• GetTransactionReceipt: get transaction receipt info by tansaction hash.

More Nebulas APIs at RPC.

2.4. Get Involved 38

http://wiki.nebulas.io/en/latest/go-nebulas/tutorials/01-installation.html#compile-nebulas
https://github.com/nebulasio/go-nebulas/tree/master/mainnet/conf
https://github.com/nebulasio/nebdocs/blob/master/docs/resources/conf/template.conf
https://github.com/nebulasio/wiki/blob/master/rpc.md#getnebstate
https://github.com/nebulasio/wiki/blob/master/rpc.md#getaccountstate
https://github.com/nebulasio/wiki/blob/master/rpc.md#call
https://github.com/nebulasio/wiki/blob/master/rpc.md#sendrawtransaction
https://github.com/nebulasio/wiki/blob/master/rpc.md#gettransactionreceipt
https://github.com/nebulasio/wiki/blob/master/rpc

nebulas Documentation, ìűIJìŃIJ 1.0

Tutorials

English

1. Installation (thanks Victor)

2. Sending a Transaction (thanks Victor)

3. Writing Smart Contract in JavaScript (thanks otto)

4. Introducing Smart Contract Storage (thanks Victor)

5. Interacting with Nebulas by RPC API (thanks Victor)

Contribution

Feel free to join the Nebulas Mainnet. If you have found something wrong, please submit
an issue or submit a pull request to let us know, and we will add your name and URL to this
page as soon as possible.

How to Join the Nebulas Testnet

Introduction

We are glad to release the Nebulas Testnet. It simulates the Nebulas network and NVM,
and allows developers to interact with Nebulas without paying the cost of gas.

https://github.com/nebulasio/go-nebulas/tree/testnet

Build

The Nebulas Testnet‘s executable file and dependant libraries need to be built first. Several
important modules are highlighted below:

• NBRE: The Nebulas Blockchain Runtime Environment is the platform for running Neb-
ulas Protocol Representation, such as the DIP, the NR, etcetera.

• NEB: The main process of the Nebulas Testnet. NEB and NBRE run in standalone pro-
cesses, and communicate through IPC.

Details of building the modules can be found in tutorials.

Configuration

The testnet configuration files are in the folder testnet/conf under testnet branch,
including:

2.4. Get Involved 39

https://github.com/victorychain
https://github.com/victorychain
https://github.com/ottokafka
https://github.com/victorychain
https://github.com/victorychain
https://github.com/nebulasio/go-nebulas/issues/new
https://github.com/nebulasio/go-nebulas/issues/new
https://github.com/nebulasio/go-nebulas/pulls
https://github.com/nebulasio/go-nebulas/tree/testnet
http://wiki.nebulas.io/en/latest/go-nebulas/tutorials/01-installation.html#compile-nebulas
https://github.com/nebulasio/go-nebulas/tree/testnet/testnet/conf

nebulas Documentation, ìűIJìŃIJ 1.0

genesis.conf

All configurable information about the genesis block is defined in genesis.conf, such as:

• meta.chain_id: chain identity.

• consensus.dpos.dynasty: the initial dynasty of validators.

• token_distribution: the initial allocation of tokens.

Attention: DO NOT change the genesis.conf.

config.conf

All configurable information about the runtime is defined in config.conf.

Please check the template.conf to find more details about the runtime configuration.

Tips: the official seed node info is as below,

seed:["/ip4/47.92.203.173/tcp/8680/ipfs/
→˓QmfSJ7JUnCEDP6LFyKkBUbpuDMETPbqMVZvPQy4keeyBDP","/ip4/47.89.180.5/
→˓tcp/8680/ipfs/QmTmnd5KXm4UFUquAJEGdrwj1cbJCHsTfPWAp5aKrKoRJK"]

API List

Test Endpoint:

• GetNebState: returns nebulas client info.

• GetAccountState: returns the account balance and nonce.

• LatestIrreversibleBlock: returns the latest irreversible block.

• Call: execute smart contract locally. The tx won‘t be submitted on chain.

• SendRawTransaction: submit signed transaction. The transaction must be signed before
sending.

• GetTransactionReceipt: get transaction receipt info from the transaction hash.

More Nebulas APIs at RPC.

Claim Tokens

Each email can claim tokens every day here.

Tutorials

1. Installation (thanks Victor)

2.4. Get Involved 40

https://github.com/nebulasio/nebdocs/blob/master/docs/resources/conf/template.conf
https://github.com/nebulasio/wiki/blob/master/rpc.md#getnebstate
https://github.com/nebulasio/wiki/blob/master/rpc.md#getaccountstate
https://github.com/nebulasio/wiki/blob/master/rpc.md#latestirreversibleblock
https://github.com/nebulasio/wiki/blob/master/rpc.md#call
https://github.com/nebulasio/wiki/blob/master/rpc.md#sendrawtransaction
https://github.com/nebulasio/wiki/blob/master/rpc.md#gettransactionreceipt
https://github.com/nebulasio/wiki/blob/master/rpc
https://testnet.nebulas.io/claim
https://github.com/victorychain

nebulas Documentation, ìűIJìŃIJ 1.0

2. Sending a Transaction (thanks Victor)

3. Writing Smart Contract in JavaScript (thanks otto)

4. Introducing Smart Contract Storage (thanks Victor)

5. Interacting with Nebulas by RPC API (thanks Victor)

Contributing

Feel free to join Nebulas Testnet. If you did find something wrong, please submit an issue
or submit a pull request to let us know, we will add your name and url to this page as soon as
possible.

Config

There are four types of configuration files in Nebulas.

• Normal node.

• Miner node.(Miner - related configuration is increased relative to normal nodes)

• Super node.(Some connection limits are higher than normal nodes)

• Sign node. (Do not synchronize information with any node, only do signature and un-
lock)

Normal node

network {
seed: ["/ip4/13.251.33.39/tcp/8680/ipfs/

→˓QmVm5CECJdPAHmzJWN2X7tP335L5LguGb9QLQ78riA9gw3"]
listen: ["0.0.0.0:8680"]
private_key: "conf/networkkey"

}

chain {
chain_id:1
datadir: "data.db"
keydir: "keydir"
genesis: "conf/genesis.conf"
signature_ciphers: ["ECC_SECP256K1"]

}

rpc {
rpc_listen: ["0.0.0.0:8784"]
http_listen: ["0.0.0.0:8785"]
http_module: ["api","admin"]
connection_limits:200
http_limits:200

2.4. Get Involved 41

https://github.com/victorychain
https://github.com/ottokafka
https://github.com/victorychain
https://github.com/victorychain
https://github.com/nebulasio/go-nebulas/issues/new
https://github.com/nebulasio/go-nebulas/pulls

nebulas Documentation, ìűIJìŃIJ 1.0

}

app {
log_level: "debug"
log_file: "logs"
enable_crash_report: true

}

stats {
enable_metrics: false

}

Miner node

network {
seed: ["/ip4/13.251.33.39/tcp/8680/ipfs/

→˓QmVm5CECJdPAHmzJWN2X7tP335L5LguGb9QLQ78riA9gw3"]
listen: ["0.0.0.0:8680"]
private_key: "conf/networkkey"

}

chain {
chain_id: 1
datadir: "data.db"
keydir: "keydir"
genesis: "conf/genesis.conf"
coinbase: "n1EzGmFsVepKduN1U5QFyhLqpzFvM9sRSmG"
signature_ciphers: ["ECC_SECP256K1"]
start_mine:true
miner: "n1PxjEu9sa2nvk9SjSGtJA91nthogZ1FhgY"
remote_sign_server: "127.0.0.1:8694"
enable_remote_sign_server: true

}

rpc {
rpc_listen: ["127.0.0.1:8684"]
http_listen: ["0.0.0.0:8685"]
http_module: ["api","admin"]
connection_limits:200
http_limits:200

}

app {
log_level: "debug"
log_file: "logs"
enable_crash_report: true

}

2.4. Get Involved 42

nebulas Documentation, ìűIJìŃIJ 1.0

stats {
enable_metrics: false

}

Super node

network {
seed: ["/ip4/13.251.33.39/tcp/8680/ipfs/

→˓QmVm5CECJdPAHmzJWN2X7tP335L5LguGb9QLQ78riA9gw3"]
listen: ["0.0.0.0:8680"]
private_key: "conf/networkkey"
stream_limits: 500
reserved_stream_limits: 50

}

chain {
chain_id:1
datadir: "data.db"
keydir: "keydir"
genesis: "conf/genesis.conf"
signature_ciphers: ["ECC_SECP256K1"]

}

rpc {
rpc_listen: ["0.0.0.0:8684"]
http_listen: ["0.0.0.0:8685"]
http_module: ["api"]
connection_limits:500
http_limits:500
http_cors: ["*"]

}

app {
log_level: "debug"
log_file: "logs"
enable_crash_report: true
pprof:{

http_listen: "0.0.0.0:8888"
}

}

stats {
enable_metrics: false

}

2.4. Get Involved 43

nebulas Documentation, ìűIJìŃIJ 1.0

Sign node

network {
listen: ["0.0.0.0:8680"]
private_key: "conf/networkkey"

}

chain {
chain_id:0
datadir: "data.db"
keydir: "keydir"
genesis: "conf/genesis.conf"
signature_ciphers: ["ECC_SECP256K1"]

}

rpc {
rpc_listen: ["0.0.0.0:8684"]
http_listen: ["127.0.0.1:8685"]
http_module: ["admin"]
connection_limits:200
http_limits:200

}

app {
log_level: "debug"
log_file: "logs"
enable_crash_report: true
pprof:{

http_listen: "127.0.0.1:8888"
}

}

stats {
enable_metrics: false

}

How to Develop

Contribution Guideline

The go-nebulas project welcomes all contributors. The process of contributing to the Go
project may be different than many projects you are used to. This document is intended as
a guide to help you through the contribution process. This guide assumes you have a basic
understanding of Git and Go.

2.4. Get Involved 44

nebulas Documentation, ìűIJìŃIJ 1.0

Becoming a contributor

Before you can contribute to the go-nebulas project you need to setup a few prerequisites.

Contributor License Agreement

TBD.

Preparing a Development Environment for Contributing

Setting up dependent tools

1. Go dependency management tool

dep is an (not-yet) official dependency management tool for Go. go-nebulas project use it
to management all dependencies.

For more information, please visit https://github.com/golang/dep

2. Linter for Go source code

Golint is official linter for Go source code. Every Go source file in go-nebulas must be
satisfied the style guideline. The mechanically checkable items in style guideline are listed in
Effective Go and the CodeReviewComments wiki page.

For more information about Golint, please visit https://github.com/golang/lint.

3. XUnit output for Go Test

Go2xunit could convert go test output to XUnit compatible XML output used in Jenk-
ins/Hudson.

Making a Contribution

Discuss your design

The project welcomes submissions but please let everyone know what you‘re working on
if you want to change or add to the go-nebulas project.

Before undertaking to write something new for the go-nebulas, please file an issue (or
claim an existing issue). Significant changes must go through the change proposal process
before they can be accepted.

2.4. Get Involved 45

https://github.com/golang/dep
https://github.com/golang/dep
https://github.com/golang/lint
https://golang.org/doc/effective_go.html
https://golang.org/wiki/CodeReviewComments
https://github.com/golang/lint
https://github.com/tebeka/go2xunit
https://github.com/nebulasio/go-nebulas/issues/new
https://github.com/nebulasio/go-nebulas/issues
https://github.com/nebulasio/wiki/blob/master/change_proposal_process

nebulas Documentation, ìűIJìŃIJ 1.0

This process gives everyone a chance to validate the design, helps prevent duplication of
effort, and ensures that the idea fits inside the goals for the language and tools. It also checks
that the design is sound before code is written; the code review tool is not the place for high-
level discussions.

Besides that, you can have an instant discussion with core developers in developers chan-
nel of Nebulas.IO on Slack.

Making a change

Getting Go Source

First you need to fork and have a local copy of the source checked out from the forked
repository.

You should checkout the go-nebulas source repo inside your $GOPATH. Go to $GOPATH
run the following command in a terminal.

$ mkdir -p src/github.com/nebulasio
$ cd src/github.com/nebulasio
$ git clone git@github.com:{your_github_id}/go-nebulas.git
$ cd go-nebulas

Contributing to the main repo

Most Go installations project use a release branch, but new changes should only be made
based on the develop branch. (They may be applied later to a release branch as part of the
release process, but most contributors won‘t do this themselves.) Before making a change,
make sure you start on the develop branch:

$ git checkout develop
$ git pull

Make your changes

The entire checked-out tree is editable. Make your changes as you see fit ensuring that
you create appropriate tests along with your changes. Test your changes as you go.

Copyright

Files in the go-nebulas repository don‘t list author names, both to avoid clutter and to
avoid having to keep the lists up to date. Instead, your name will appear in the change log and
in the CONTRIBUTORS file and perhaps the AUTHORS file. These files are automatically
generated from the commit logs perodically. The AUTHORS file defines who âĂIJThe go-
nebulas AuthorsâĂİâĂŤthe copyright holdersâĂŤare.

2.4. Get Involved 46

https://nebulasio.herokuapp.com
https://github.com/nebulasio/wiki/blob/master/release_process

nebulas Documentation, ìűIJìŃIJ 1.0

New files that you contribute should use the standard copyright header:

// Copyright (C) 2017 go-nebulas authors
//
// This file is part of the go-nebulas library.
//
// the go-nebulas library is free software: you can redistribute it
→˓and/or modify
// it under the terms of the GNU General Public License as
→˓published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// the go-nebulas library is distributed in the hope that it will
→˓be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with the go-nebulas library. If not, see <http://www.gnu.
→˓org/licenses/>.
//

Files in the repository are copyright the year they are added. Do not update the copyright
year on files that you change.

Goimports, Golint and Govet

Every Go source file in go-nebulas must pass Goimports, Golint and Govet check. Golint
check the style mistakes, we should fix all style mistakes, including comments/docs. Govet
reports suspicious constructs, we should fix all issues as well.

Run following command to check your code:

$ make fmt lint vet

lint.report text file is the Golint report, vet.report text file is the Govet report.

Testing

You‘ve written test code, tested your code before sending code out for review, run all the
tests for the whole tree to make sure the changes don‘t break other packages or programs:

$ make test

test.report text file or test.report.xml XML file is the testing report.

2.4. Get Involved 47

https://golang.org/pkg/testing/

nebulas Documentation, ìűIJìŃIJ 1.0

Commit your changes

The most importance of committing changes is the commit message. Git will open an
editor for a commit message. The file will look like:

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch foo
Changes not staged for commit:
modified: editedfile.go
#

At the beginning of this file is a blank line; replace it with a thorough description of
your change. The first line of the change description is conventionally a one-line summary
of the change, prefixed by the primary affected package, and is used as the subject for code
review email. It should complete the sentence “This change modifies Go to _.“ The rest of
the description elaborates and should provide context for the change and explain what it does.
Write in complete sentences with correct punctuation, just like for your comments in Go. If
there is a helpful reference, mention it here. If you‘ve fixed an issue, reference it by number
with a # before it.

After editing, the template might now read:

math: improve Sin, Cos and Tan precision for very large arguments

The existing implementation has poor numerical properties for
large arguments, so use the McGillicutty algorithm to improve
accuracy above 1e10.

The algorithm is described at http://wikipedia.org/wiki/
→˓McGillicutty_Algorithm

Fixes #159

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch foo
Changes not staged for commit:
modified: editedfile.go
#

The commented section of the file lists all the modified files in your client. It is best to keep
unrelated changes in different commits, so if you see a file listed that should not be included,
abort the command and move that file to a different branch.

The special notation “Fixes #159“ associates the change with issue 159 in the go-nebulas
issue tracker. When this change is eventually applied, the issue tracker will automatically mark
the issue as fixed. (There are several such conventions, described in detail in the GitHub Issue
Tracker documentation.)

2.4. Get Involved 48

https://github.com/nebulasio/go-nebulas/issues/159
https://github.com/nebulasio/go-nebulas/issues/159
https://help.github.com/articles/closing-issues-via-commit-messages/
https://help.github.com/articles/closing-issues-via-commit-messages/

nebulas Documentation, ìűIJìŃIJ 1.0

Creating a Pull Request

For more information about creating a pull request, please refer to the Create a Pull Re-
quest in Github page.

How to debug Go-Nebulas project

ä¡IJèĂĚïijŽWenbo Liu aries.lwb@gmail.com, July 17, 2017

Go-NebulaséąźçŻőåIJřåİĂïijŽhttps://github.com/nebulasio/go-nebulas.git

çőĂäżŃ

è£ŹçŕĞç§ æŰĞå§žäžŐMac OSX åŠŇ Ubuntuçşżçż§ïijŇçőĂå ŢäżŃçż åęĆä¡ŢèřČèŕŢGo-
NebulaséąźçŻőïijŇäÿżèęĄäżŃçż äÿL’çğ æŰźæşŢèřČèŕŢïijŽdlvåŚ¡äżd’èąŇèřČèŕŢïijŇGogland
IDEèřČèŕŢïijŇäżěåŔŁVisual Studio CodeèřČèŕŢãĂĆ

èřČèŕŢåŹĺDelveåőL’èčĚ

åIJĺ Mac OSX äÿŁåőL’èčĚDelve

GoogleåőŸæŰźäÿžgolangçŽĎèřČèŕŢä¿Ńå ŘçŤĺgdbïijŇä¡ĘæŸŕdelveæŸŕæŻt’åŘĹéĂĆçŽĎèřČèŕŢåŹĺïijŇæŕŤgdbèČ¡æŔŘä¿ŻæŻt’åd’ŽçŽĎä£ąæĄŕãĂĆåőL’èčĚdelveïijŇåIJĺMacäÿŁäÿĂèĹňéĞĞçŤĺHomebrewãĂĆä¡ĘæŸŕå¿ĹéĄŮæĘ¿ïijŇåIJĺæIJňæŰĞåĘŹåřśæŮűïijŇHomebrewæŔŘä¿ŻçŽĎdelveåŇĚèĂĄæŮğïijŇæIJL’bugïijŇæŮăæşŢæ čçąőèřČèŕŢGo-
NebulasãĂĆæŹőéĂŽçŽĎgoéąźçŻőæŸŕåŔŕäżěçŽĎïijŇåĚůä¡Şä¡ŞçŐřåřśæŸŕèřČèŕŢGo-
NebulaséąźçŻőæŮűïijŇæŰ çĆźæŮăæşŢåĄIJä¡ŔïijŇäijŽæřÿè£IJhangä¡ŔãĂĆæĹŚäżňå£ĚéążäżŐgithubäÿŁäÿŃè¡¡delveçŽĎæIJĂæŰřæžŘäżčçăĄçijŰèŕŚæĹŘdelve
binaryïijŇæ ěéłd’åęĆäÿŃïijŽ

åĚĹçŤĺHomebrewåőL’èčĚæIJL’bugçŽĎDelveïijŽ

brew install go-delve/delve/delve
rm /usr/local/bin/dlv

åőL’èčĚæ d’æIJL’éŮőéćŸçŽĎDelveïijŇåĚűåőd̄åřśæŸŕäÿžäžĘèől’åőČåÿőæĹŚäżňåIJĺMacæIJžåŹĺäÿŁç ¿åŔŚäÿĂäÿłèĞłç ¿åŘ çŽĎdlv-
certèŕĄäźęãĂĆåęĆæd̄IJä¡ăèĞłåůśæĎ£æĎŔçźĄçŘŘçŽĎæL’ŃåŁĺåĹŻåżžèŕĄäźęïijŇäź§åŔŕäżěäÿ çŤĺåőL’èčĚDelveïijŇåŔĆèĂČhttps://github.com/derekparker/delve/blob/v0.12.2/Documentation/installation/osx/install.mdçŽĎãĂŘCreate
a self-signed certificateãĂŚãĂĆ çňňäžŇæİąrmåŚ¡äżd’æŸŕäÿžäžĘåĹăéŹd’è£ŹäÿłæIJL’éŮőéćŸçŽĎdlv
binaryïijŇæĹŚäżňéIJĂèęĄäżŐæžŘçăĄçijŰèŕŚåĞžäÿĂäÿłæ čçąőçŽĎçL’ĹæIJňïijŇåźűäÿŤåĹl’çŤĺHomebewäÿžæĹŚäżňåőL’èčĚçŽĎèŕĄäźęåĄŽcodesignãĂĆ
äÿŃè¡¡æžŘäżčçăĄ

mkdir -p /Users/xxx/go-delve/src/github.com/derekparker
cd /Users/xxx/go-delve/src/github.com/derekparker
git clone https://github.com/derekparker/delve.git

åĹŻåżžäÿĂäÿłäÿt’æŮűæŰĞäżűåd’źïijŇäżŐgithubäÿŃè¡¡äżčçăĄãĂĆæşĺæĎŔæŰĞäżűåd’źäÿ æăĞæşĺçžćèL’šçŽĎéČĺåĹĘïijŇå£ĚéążåőŇåĚĺäÿĂæăůïijŇè£ŹæŸŕåŻăäÿžgoéąźçŻőçŽĎæžŘçăĄçżĎçżĞèğĎåĹŹïijŇåŘęåĹŹäÿŃäÿĂæ ěçijŰèŕŚäijŽåĞžéŤŹïijŇæŁěè ępackage
not foundãĂĆåĚűåőČéČĺåĹĘèŕůæăźæ őèĞłåůśæIJžåŹĺçŐŕåćČèő¿ç¡őãĂĆ

çijŰèŕŚ

2.4. Get Involved 49

https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/creating-a-pull-request/
mailto:aries.lwb@gmail.com
https://github.com/nebulasio/go-nebulas.git
https://github.com/derekparker/delve/blob/master/Documentation/installation/osx/install
https://github.com/derekparker/delve/blob/v0.12.2/Documentation/installation/osx/install.md%E7%9A%84%E3%80%90Create

nebulas Documentation, ìűIJìŃIJ 1.0

export GOPATH=/Users/xxx/go-delve
cd /Users/xxx/go-delve/src/github.com/derekparker/delve
make install

åžŤèŕěäijŽåĞžçŐřåęĆäÿŃæŔŘçd’žïijŇèąĺæŸŐçijŰèŕŚæĹŘåŁ§ïijŽ

scripts/gencert.sh || (echo "An error occurred when generating and
→˓installing a new certicate"; exit 1)
go install -ldflags="-s" github.com/derekparker/delve/cmd/dlv
codesign -s "dlv-cert" /Users/xxx/go-delve/bin/dlv

çĎűåŘŐcp /Users/liuwb/go-delve/bin/dlv/usr/local/bin/ïijŇæŁŁçijŰèŕŚåě¡çŽĎdlvæŃůèt’İè£Ż/usr/local/binçŻőå¡ŢïijŇæŻ£æ ćäźŃåL’ æIJL’bugçŽĎdlv
debuggerãĂĆè¿ŞåĚěåŚ¡äżd’dlv versionïijŇåęĆæd̄IJèČ¡æ čåÿÿè£ŘèąŇïijŇæŸ¿çd’žçL’ĹæIJňåŔůïijŇèŕt’æŸŐdlvåůšçżŔèćńåŁăåĚěåĹřPATHãĂĆ

åIJĺ Ubuntu äÿŁåőL’èčĚDelve

åŕźäžŐUbuntuçşżçż§ïijŇåŔŕäżěçŻt’æŐěä¡£çŤĺäÿŃéİćçŽĎæŇĞäżd’åőL’èčĚDelveïijŽ

go get -u github.com/derekparker/delve/cmd/dlv

äÿŃè¡¡Go-NebulasåůěçĺŃäżčçăĄ

mkdir /Users/xxx/workspace/blockchain/src/github.com/nebulasio/
cd /Users/xxx/workspace/blockchain/src/github.com/nebulasio/
git clone https://github.com/nebulasio/go-nebulas.git

åĹŻåżžäÿĂäÿłäÿt’æŮűæŰĞäżűåd’źïijŇäżŐgithubäÿŃè¡¡äżčçăĄãĂĆæşĺæĎŔæŰĞäżűåd’źäÿ æăĞæşĺçžćèL’šçŽĎéČĺåĹĘïijŇå£ĚéążåőŇåĚĺäÿĂæăůïijŇè£ŹæŸŕåŻăäÿžgoéąźçŻőçŽĎæžŘçăĄçżĎçżĞèğĎåĹŹïijŇåĚűåőČéČĺåĹĘèŕůæăźæ őèĞłåůśæIJžåŹĺçŐŕåćČèő¿ç¡őãĂĆ

DelveåŚ¡äżd’èąŇèřČèŕŢ åęĆæd̄IJä¡ăäżěåL’ çŤĺgdbèřČèŕŢè£ĞCçĺŃåžŔïijŇåŕźdlvåŚ¡äżd’èąŇèřČèŕŢçŽĎéčŐæăijäź§äÿ äijŽéŹŇçŤ§ãĂĆåőŇæŢt’çŽĎdlvåŚ¡äżd’æŰĞæąčïijŇåŔĆèğĄhttps://github.com/derekparker/delve/blob/master/Documentation/usage/dlv.md
è£ŹéĞŇåŔłäżŃçż debugéČĺåĹĘãĂĆ

è¿ŞåĚěåęĆäÿŃåŚ¡äżd’è£ŻåĚěèřČèŕŢ

export GOPATH=/Users/xxx/workspace/blockchain/
cd /Users/xxx/workspace/blockchain/
dlv debug github.com/nebulasio/go-nebulas/cmd/neb -- --config /
→˓Users/xxx/workspace/blockchain/src/github.com/nebulasio/go-
→˓nebulas/conf/default/config.conf

è£ŘèąŇæŮăèŕŕçŽĎèŕİïijŇäijŽè£ŻåĚědebug sessionïijŽ

Type 'help' for list of commands.
(dlv)

æĹŚäżňæL’ŞçőŮåIJĺnebçŽĎåĞ¡æŢřåĚěåŔčèő¿ç¡őæŰ çĆźïijŇè¿ŞåĚěåŚ¡äżd’

(dlv) break main.neb
Breakpoint 1 set at 0x4ba6798 for main.neb() ./src/github.com/
→˓nebulasio/go-nebulas/cmd/neb/main.go:80
(dlv)

dlvèřČèŕŢåŹĺæŔŘçd’žäżčçăĄåřĘåIJĺcmd/neb/main.goçŽĎèąŇåŔů80èąŇåĄIJä¡ŔïijŇæşĺæĎŔè£ŹæŮűnebçĺŃåžŔè£ŸæšąæIJL’è£ŘèąŇãĂĆè¿ŞåĚěåŚ¡äżd’continueïijŽ

2.4. Get Involved 50

https://github.com/derekparker/delve/blob/master/Documentation/usage/dlv

nebulas Documentation, ìűIJìŃIJ 1.0

(dlv) continue
> main.neb() ./src/github.com/nebulasio/go-nebulas/cmd/neb/main.
→˓go:80 (hits goroutine(1):1 total:1) (PC: 0x4ba6798)

75: sort.Sort(cli.CommandsByName(app.Commands))
76:
77: app.Run(os.Args)
78: }
79:

=> 80: func neb(ctx *cli.Context) error {
81: n, err := makeNeb(ctx)
82: if err != nil {
83: return err
84: }
85:

æ§ěçIJŃåŔŸéĞŔïijŇåŔŕçŤĺprintåŚ¡äżd’ïijŽ

(dlv) print ctx

*github.com/nebulasio/go-nebulas/vendor/github.com/urfave/cli.
→˓Context {

App: *github.com/nebulasio/go-nebulas/vendor/github.com/urfave/
→˓cli.App {

Name: "neb",
HelpName: "debug",
Usage: "the go-nebulas command line interface",
UsageText: "",
ArgsUsage: "",
Version: ", branch , commit ",
Description: "",
Commands: []github.com/nebulasio/go-nebulas/vendor/github.

→˓com/urfave/cli.Command len: 11, cap: 18, [
(*github.com/nebulasio/go-nebulas/vendor/github.com/

→˓urfave/cli.Command)(0xc4201f4000),
(*github.com/nebulasio/go-nebulas/vendor/github.com/

→˓urfave/cli.Command)(0xc4201f4128),
(*github.com/nebulasio/go-nebulas/vendor/github.com/

→˓urfave/cli.Command)(0xc4201f4250),
(*github.com/nebulasio/go-nebulas/vendor/github.com/

→˓urfave/cli.Command)(0xc4201f4378),
(*github.com/nebulasio/go-nebulas/vendor/github.com/

→˓urfave/cli.Command)(0xc4201f44a0),

æŻt’åd’ŽæŁĂæIJŕèţĎæŰŹïijŇèŕůåŔĆèĂČ https://github.com/derekparker/
delve/tree/master/Documentation/cli https://blog.gopheracademy.com/advent-2015/
debugging-with-delve/ http://hustcat.github.io/getting-started-with-delve/

2.4. Get Involved 51

https://github.com/derekparker/delve/tree/master/Documentation/cli
https://github.com/derekparker/delve/tree/master/Documentation/cli
https://blog.gopheracademy.com/advent-2015/debugging-with-delve/
https://blog.gopheracademy.com/advent-2015/debugging-with-delve/
http://hustcat.github.io/getting-started-with-delve/

nebulas Documentation, ìűIJìŃIJ 1.0

Visual Studio CodeèřČèŕŢ

Visual Studio CodeæŸŕå¿őè¡ŕåĚňåŔÿåŔŚåÿČçŽĎèůĺåźşåŔřäżčçăĄçijŰè¿ŚåůěåĚůïijŇäÿŃè¡¡åIJřåİĂïijŽhttps:
//code.visualstudio.com/Download VS CodeéIJĂèęĄåőL’èčĚGoæŔŠäżű

æL’ŞåijĂæŰĞäżűåd’ź/Users/xxx/workspace/blockchain/src/github.com/nebulasio/go-
nebulas/ïijŇåIJĺ.vscodeæŰĞäżűåd’źäÿŃåĹŻåżžäÿd’äÿłæŰĞäżűsettings.jsonåŠŇlaunch.jsonãĂĆ
settings.jsonæŰĞäżűåĘĚåőźïijŽ

// Place your settings in this file to overwrite default and user
→˓settings.
{

"go.gopath": "/Users/xxx/workspace/blockchain/",
"go.formatOnSave": true,
"go.gocodeAutoBuild": false,
"go.toolsGopath": "/Users/xxx/workspace/gotools",
"explorer.openEditors.visible": 0,

}

go.toolsGopathæŸŕanalysis toolsåőL’èčĚçŽĎåIJřåİĂïijŇåŔŕäżěæŇĞåőŽäÿžäżżä¡ŢçŻőå¡ŢïijŇè£ŹäžŻanalysis
toolsåŔŕäżěä¿ŻåĚűåőČworkspaceåĚśäžńãĂĆ

launch.jsonæŰĞäżűåĘĚåőźïijŽ

{
"version": "0.2.0",
"configurations": [

{
"name": "Launch",
"type": "go",
"request": "launch",
"mode": "debug",
"program": "${workspaceRoot}/cmd/neb",
"env": {

"GOPATH": "/Users/xxx/workspace/blockchain/"
},
"args": [

"--config",
"/Users/xxx/workspace/blockchain/src/github.com/

→˓nebulasio/go-nebulas/conf/default/config.conf"
],
"showLog": true

2.4. Get Involved 52

https://code.visualstudio.com/Download
https://code.visualstudio.com/Download

nebulas Documentation, ìűIJìŃIJ 1.0

}
]

}

åIJĺcmd/neb/main.goïijŇnebåĞ¡æŢřäÿ èő¿ç¡őæŰ çĆźïijŇF5è£ŘèąŇïijŇGo-
NebulaséąźçŻőäijŽè£ŻèąŇçijŰèŕŚè£ŘèąŇïijŇåĄIJåIJĺæŰ çĆźïijŽ

çĎűåŘŐïijŇåřśåŔŕäżěåijĂå£ČçŽĎåŘŕåŁĺNebulasäżčçăĄèřČèŕŢäźŃæŮĚïijĄ

debuging-with-gdb

OverView

Last week we found a lot of âĂIJFailed to update latest irreversible block.âĂİ in neb
log with Leon. The reference code (nebulasio/go-nebulas/core/blockchain.go updateLatestIrre-
versibleBlock) ïijŇ in the code we found the cur variable is not equal to the tail variable , why?
to find the cause, we try to use tool to dynamically display variable information and facilitate
single-step debugging.

Goroutines

In c++ program we often use gbd to debug, so we think why not to use gdb to debug golang
program . First we try to look up the BlockChain loop goroutine state and print the variables .

In c++ we all use info threads and thread x to show thread info but in the golang
program ïijŇwe should use info goroutines and goroutine xx bt to displays the
current list of running goroutines.

(gdb) info goroutines Undefined info command: “goroutines“. Try “help info“.
(gdb) source /usr/local/go/src/runtime/runtime-gdb.py Loading Go Runtime support. (gdb)
info goroutines

1 waiting runtime.gopark
2 waiting runtime.gopark

2.4. Get Involved 53

nebulas Documentation, ìűIJìŃIJ 1.0

3 waiting runtime.gopark
4 waiting runtime.gopark
5 syscall runtime.notetsleepg
6 syscall runtime.notetsleepg
7 waiting runtime.gopark
... ...

(gdb) goroutine 84 bt

#0 runtime.gopark (unlockf={void (struct runtime.g , void , bool
→˓*)} 0xc420c57c80, lock=0x0, reason="select", traceEv=24 '\030',
→˓traceskip=1) at /data/packages/go/src/runtime/proc.go:288
#1 0x0000000000440fd9 in runtime.selectgo (sel=0xc420c57f48, ~
→˓r1=842353656960) at /data/packages/go/src/runtime/select.go:395
#2 0x0000000000ad2d73 in github.com/nebulasio/go-nebulas/core.
→˓(*BlockChain).loop (bc=0xc4202c6320)at /neb/golang/src/github.com/
→˓nebulasio/go-nebulas/core/blockchain.go:184
#3 0x0000000000460421 in runtime.goexit () at /data/packages/go/
→˓src/runtime/asm_amd64.s:2337
#4

But neb has too many goroutines, we donâĂŹt kown which one , we give up

BreakPoints

Second we try to set break point to debug

(gdb) b blockchain.go:381

Breakpoint 2 at 0xad4373: file /neb/golang/src/github.com/nebulasio/go-
nebulas/core/blockchain.go, line 381.

(gdb) b core/blockchain.go:390

Breakpoint 3 at 0xad44c6: file /neb/golang/src/github.com/nebulasio/go-
nebulas/core/blockchain.go, line 390.

(gdb) info breakpoints // show all breakpoints

(gdb) d 2 //delete No 2 breakpoint

Now let the neb continue its execution until the next breakpoint, enter the c command:
(gdb) c Continuing

Thread 6 "neb" hit Breakpoint 2, github.com/nebulasio/go-nebulas/
→˓core.(*BlockChain).updateLatestIrreversibleBlock (bc=0xc4202c6320,
→˓ tail=0xc4244198c0)
at /neb/golang/src/github.com/nebulasio/go-nebulas/core/blockchain.
→˓go:382
382 miners := make(map[string

now we can use p(print) to print variables value

2.4. Get Involved 54

nebulas Documentation, ìűIJìŃIJ 1.0

(gdb) `p cur`
$2 = (struct github.com/nebulasio/go-nebulas/core.Block *)
→˓0xc420716f90
(gdb) `p cur.height`
$3 = 0
(gdb) `p bc`
$4 = (struct github.com/nebulasio/go-nebulas/core.BlockChain *)
→˓0xc4202c6320
(gdb) `p bc.latestIrreversibleBlock`
$5 = (struct github.com/nebulasio/go-nebulas/core.Block *)
→˓0xc4240bbb00
(gdb) `p bc.latestIrreversibleBlock.height`
$6 = 51743
(gdb) `p tail`
$7 = (struct github.com/nebulasio/go-nebulas/core.Block *)
→˓0xc4244198c0
(gdb) `p tail.height`
$8 = 51749

now we can use info goroutines again, to find current goroutine. info goroutines
with the * indicating the current execution, so we find the current goroutine nunmber quickly.

the next breakpoint we can use c command , so we found the cur and lib is not equal,
because of length of the miners is less than ConsensusSizeïijŇ In the loop the cur change to the
parent block .

Other

When compiling Go programs, the following points require particular attention:

• Using -ldflags “-s“ will prevent the standard debugging information from being printed

• Using -gcflags “-N-l“ will prevent Go from performing some of its automated optimiza-
tions -optimizations of aggregate variables, functions, etc. These optimizations can make
it very difficult for GDB to do its job, so it‘s best to disable them at compile time using
these flags.

References

• Debugging with GDB

• GDBèřČèŕŢGOçĺŃåžŔ

neb-dont-generate-coredump-file

2.4. Get Involved 55

https://astaxie.gitbooks.io/build-web-application-with-golang/en/11.2.html
http://blog.studygolang.com/2012/12/gdb%E8%B0%83%E8%AF%95go%E7%A8%8B%E5%BA%8F/

nebulas Documentation, ìűIJìŃIJ 1.0

OverView

During Testing, neb may be crash, and we want to get the coredump file which could help
us to find the reason. However, neb don‘t generate coredump file by default. We can find the
crash log in /var/log/apport.log when a crash occurred:

"called for pid 10110, signal 11, core limit 0, dump mode 1 "

The coredump file is very very important, it can serve as useful debugging aids in several
situations, and help us to debug quickly. Therefore we should make neb to generate coredump
file.

Set the core file size

We can use ulimit -a command to show core file size. If it‘s size is zero, which
means coredump file is disabled, then we should set a value for core file size. for temporarily
change we can use ulimit -c unlimited , and for permanently change we can edit /
etc/security/limits.conf file, it will take effect after reboot or command sysctl
-p.

<domain> <type> <item> <value>

* soft core unlimited

But these ways are‘t work, neb still can‘t generate coredump file and cat /proc/
$pid/limits always “Max core file size 0“

Why? Why? Why? It doesn‘t Work

1. If the setting is wrong? Just try a c++ programe build, run it and we can find that it can
generate coredump.

2. Neb is started by supervisord, is it caused by supervisordïij§

3. Try to start neb without supervisord, then the neb coredump is generated!

4. Yes, the reason is supervisord, then we can google “supervisord+coredump“ to solve it.

Solution

Supervisord only set RLIMIT_NOFILE, RLIMIT_NOPROC by set_rlimits , others are
seted default 0 1. modify supervisord code options.py in 1293 line

vim /usr/lib/python2.6/site-packages/supervisor/options.py

soft, hard = resource.getrlimit(resource.RLIMIT_CORE)
resource.setrlimit(resource.RLIMIT_CORE, (-1, hard))

1. restart supervisord and it works .

2.4. Get Involved 56

nebulas Documentation, ìűIJìŃIJ 1.0

Other seetings

You can also change the name and path of coredump file by changing file /proc/sys/
kernel/core_pattern:

echo "/neb/app/core-%e-%p-%t" > /proc/sys/kernel/core_pattern

%p: pid
%: '%' is dropped
%%: output one '%'
%u: uid
%g: gid
%s: signal number
%t: UNIX time of dump
%h: hostname
%e: executable filename
%: both are dropped

References

• supervisord coredump

• core_pattern

Tutorials

Nebulas 101 - 01 Compile and Install Nebulas

The current version of Nebulas Mainnet is 2.0, which is called Nebulas Nova.

Nebulas Nova aims to discover the value of blockchain data, and it also means the future
of collaboration.

Check our Youtube Introduction for more details.

You can download the Nebulas source code to compile the private chain locally.

To learn about Nebulas, please read the Nebulas Non-Technical White Paper.

To learn about the technology, please read the Nebulas Technical White Paper and the
Nebulas github code.

At present, Nebulas can only run on Mac and Linux at this stage. The Windows
version will be coming later.

Golang Environment

Nebulas is implemented in Golang and C++.

2.4. Get Involved 57

https://www.jianshu.com/p/f5920842b27b
https://sigquit.wordpress.com/tag/core_pattern/
https://www.youtube.com/watch?v=jLIYkG35Ljo
https://nebulas.io/docs/NebulasWhitepaper.pdf
https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf
https://github.com/nebulasio/go-nebulas

nebulas Documentation, ìűIJìŃIJ 1.0

Mac OSX

Homebrew is recommended for installing golang on Mac.

install
brew install go

environment variables
export GOPATH=/path/to/workspace

Note: GOPATH is a local golang working directory which could be decided by
youself. After GOPATH is configured, your go projects need to be placed in
GOPATH directory.

Linux

download
wget https://dl.google.com/go/go1.12.linux-amd64.tar.gz

extract
tar -C /usr/local -xzf go1.12.linux-amd64.tar.gz

environment variables
export PATH=$PATH:/usr/local/go/bin
export GOPATH=/path/to/workspace

Compile Nebulas

Download

Clone source code with the following commands.

enter workspace
cd /path/to/workspace

download
git clone https://github.com/nebulasio/go-nebulas.git

enter repository
cd go-nebulas

master branch is most stable
git checkout master

2.4. Get Involved 58

https://brew.sh/

nebulas Documentation, ìűIJìŃIJ 1.0

Build NEB

• Set up runtime environment

cd /path/to/workspace
source setup.sh

• Build NEB You can now build the executable for Nebulas:

cd /path/to/workspace
make build

Once the building is completeïijŇthere will be an ex-
ecutable file neb generated under the root directory.

make
build

Start NEB

Genesis Block

Before launching a new Nebulas chain, we have to define the configuration of genesis
block.

Genesis Block Configuration

Neb genesis text file. Scheme is defined in core/pb/genesis.proto.

meta {
Chain identity

chain_id: 100
}

consensus {
dpos {
Initial dynasty, including all initial miners

dynasty: [
[miner address],
...

]
}

}

Pre-allocation of initial tokens
token_distribution [

{

2.4. Get Involved 59

nebulas Documentation, ìűIJìŃIJ 1.0

address: [allocation address]
value: [amount of allocation tokens]

},
...

]

An example genesis.conf is located in conf/default/genesis.conf.

Configuration

Before getting a neb node started, we have to define the configuration of this node.

Neb Node Configuration

Neb configuration text file. Scheme is defined in neblet/pb/
→˓config.proto:Config.

Network Configuration
network {

For the first node in a new Nebulas chain, `seed` is not need.
Otherwise, every node need some seed nodes to introduce it

→˓into the Nebulas chain.
seed: ["/ip4/127.0.0.1/tcp/8680/ipfs/

→˓QmP7HDFcYmJL12Ez4ZNVCKjKedfE7f48f1LAkUc3Whz4jP"]

P2p network service host. support mutiple ip and ports.
listen: ["0.0.0.0:8680"]

The private key is used to generate a node ID. If you don't
→˓use the private key, the node will generate a new node ID.

private_key: "conf/network/id_ed25519"
}

Chain Configuration
chain {

Network chain ID
chain_id: 100

Database storage location
datadir: "data.db"

Accounts' keystore files location
keydir: "keydir"

The genesis block configuration
genesis: "conf/default/genesis.conf"

Signature algorithm

2.4. Get Involved 60

nebulas Documentation, ìűIJìŃIJ 1.0

signature_ciphers: ["ECC_SECP256K1"]

Miner address
miner: "n1SAQy3ix1pZj8MPzNeVqpAmu1nCVqb5w8c"

Coinbase address, all mining reward received by the above
→˓miner will be send to this address

coinbase: "n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE"

The passphrase to miner's keystore file
passphrase: "passphrase"

}

API Configuration
rpc {

GRPC API port
rpc_listen: ["127.0.0.1:8684"]

HTTP API port
http_listen: ["127.0.0.1:8685"]

The module opened
http_module: ["api", "admin"]

}

Log Configuration
app {

Log level: [debug, info, warn, error, fatal]
log_level: "info"

Log location
log_file: "logs"

Open crash log
enable_crash_report: false

}

NBRE configurations
nbre {

The root directory of NBRE, where the NBRE libraries located
root_dir: "nbre"

NBRE log folder path
log_dir: "conf/nbre/logs"

NBRE db location
data_dir: "conf/nbre/nbre.db"

NBRE binary location
nbre_path: "nbre/bin/nbre"

2.4. Get Involved 61

nebulas Documentation, ìűIJìŃIJ 1.0

Administrator address used to submit tx and authorize
→˓specific account

with the right of IR submission. For more details, please
→˓check the NBRE

related documents.
admin_address: "n1S9RrRPC46T9byYBS868YuZgzqGuiPCY1m"

Height when the DIP takes effect
start_height: 2307000

NEB and NBRE inter-process communication socket
ipc_listen: "127.0.0.1"
ipc_port: 8688

}

Metrics Configuration
stats {

Open node metrics
enable_metrics: false

Influxdb configuration
influxdb: {

host: "http://localhost:8086"
db: "nebulas"
user: "admin"
password: "admin"

}
}

A lot of examples can be found in $GOPATH/src/github.com/nebulasio/
go-nebulas/conf/

Run Nodes

The Nebulas chain you are running at this point is private and is different with
official Testnet and Mainnet.

Start your first Nebulas node with the following commands.

cd $GOPATH/src/github.com/nebulasio/go-nebulas
./neb -c conf/default/config.conf

After starting, the following should be visible in the terminal:

2.4. Get Involved 62

nebulas Documentation, ìűIJìŃIJ 1.0

seed
node start

By default, the node using conf/default/config.conf won‘t mine new blocks.
Start your first Nebulas mining node with another commands.

cd $GOPATH/src/github.com/nebulasio/go-nebulas
./neb -c conf/example/miner.conf

After the node starts, if the connection with the seed node is successful, you can
see the following log (detailed log can be found in: logs/miner.1/neb.log):

node
start

Note: You can start many nodes locally. Please make sure the ports in your node
configurations won‘t conflict with each other.

2.4. Get Involved 63

nebulas Documentation, ìűIJìŃIJ 1.0

Next step: Tutorial 2

Sending Transactions on Nebulas

Nebulas 101 - 02 Sending Transactions on Nebulas

Youtube Tutorial

For this portion of the tutorial we will pick up where we left off in the Installation
tutorial.

Nebulas provides three methods to send transactionsïijŽ

1. Sign & Send

2. Send with Passphrase

3. Unlock & Send

Here is an introduction to sending a transaction in Nebulas through the three methods
above and verifying whether the transaction is successful.

Prepare Accounts

In Nebulas, each address represents an unique account.

Prepare two accounts: an address to send tokens (the sending address, called “from“) and
an address to receive the tokens (the receiving address, called “to“).

The Sender

Here we will use the coinbase account in the conf/example/miner.conf, which
is n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE as the sender. As the miner‘s coinbase
account, it will receive some tokens as the mining reward. Then we could send these tokens to
another account later.

The Receiver

Create a new wallet to receive the tokens.

$./neb account new
Your new account is locked with a passphrase. Please give a
→˓passphrase. Do not forget this passphrase.
Passphrase:
Repeat passphrase:
Address: n1SQe5d1NKHYFMKtJ5sNHPsSPVavGzW71Wy

2.4. Get Involved 64

https://www.youtube.com/watch?v=_Njq8LX2r-4
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/tutorials/01-installation
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/tutorials/01-installation

nebulas Documentation, ìűIJìŃIJ 1.0

When you run this command you will have a different wallet address with
n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE. Please use your generated
address as the receiver.

The keystore file of the new wallet will be located in $GOPATH/src/github.com/
nebulasio/go-nebulas/keydir/

Start the Nodes

Start Seed Node

Firstly, start a seed node as the first node in local private chain.

./neb -c conf/default/config.conf

Start Miner Node

Secondly, start a miner node connecting to the seed node. This node will generate new
blocks in local private chain.

./neb -c conf/example/miner.conf

How long a new block will be minted?

In Nebulas, DPoS is chosen as the temporary consensus algorithm before Proof-
of-Devotion(PoD, described in Technical White Paper) is ready. In this consensus
algorithm, each miner will mint new block one by one every 15 seconds.

In current context, we have to wait for 315(=15*21) seconds to get a new block
because there is only one miner among 21 miners defined in conf/default/
genesis.conf working now.

Once a new block minted by the miner, the mining reward will be added
to the coinbase wallet address used in conf/example/miner.conf which is
n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE.

Interact with Nodes

Nebulas provides developers with HTTP API, gRPC API and CLI to interact with the
running nodes. Here, we will share how to send a transaction in three methods with HTTP API
(API Module | Admin Module).

The Nebulas HTTP Lisenter is defined in the node configuration. The default port
of our seed node is 8685.

At first, check the sender‘s balance before sending a transaction.

2.4. Get Involved 65

https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf
https://github.com/nebulasio/wiki/blob/master/rpc
https://github.com/nebulasio/wiki/blob/master/rpc_admin

nebulas Documentation, ìűIJìŃIJ 1.0

Check Account State

Fetch the state of sender‘s account n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE
with /v1/user/accountstate in API Module using curl.

> curl -i -H Accept:application/json -X POST http://localhost:8685/
→˓v1/user/accountstate -d '{"address":
→˓"n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE"}'

{
"result": {

"balance": "5000000000000000000000000",
"nonce": "0",
"type": 87,
"height":"1",
"pending":"0"

}
}

Note Type is used to check if this account is a smart contract account. 88 repre-
sents a smart contract account and 87 a non-contract account. Height is used to
indicate the current height of the blockchain when the API is called. Pending is
used to show how many pending transactions your address has in the Tx Pool.

As you can see, the receiver has been rewarded with some tokens for mining new blocks.

Then let‘s check the receiver‘s account state.

> curl -i -H Accept:application/json -X POST http://localhost:8685/
→˓v1/user/accountstate -d '{"address":"your_address"}'

{
"result": {

"balance": "0",
"nonce": "0",
"type": 87,
"height":"1",
"pending":"0"

}
}

The new account doesn‘t have tokens as expected.

Send a Transaction

Now letâĂŹs send a transaction in three methods to transfer some tokens from the sender
to the receiver!

2.4. Get Involved 66

nebulas Documentation, ìűIJìŃIJ 1.0

Sign & Send

In this way, we can sign a transaction in an offline environment and then submit it to
another online node. This is the safest method for everyone to submit a transaction without
exposing your own private key to the Internet.

First, sign the transaction to get raw data.

> curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/sign -d '{"transaction":{"from":
→˓"n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE","to":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5", "value":
→˓"1000000000000000000","nonce":1,"gasPrice":"20000000000","gasLimit
→˓":"2000000"}, "passphrase":"passphrase"}'

{"result":{"data":"CiAbjMP5dyVsTWILfXL1MbwZ8Q6xOgX/
→˓JKinks1dpToSdxIaGVcH+WT/
→˓SVMkY18ix7SG4F1+Z8evXJoA35caGhlXbip8PupTNxwV4SRM87r798jXWADXpWngIhAAAAAAAAAAAA3gtrOnZAAAKAEwuKuC1wU6CAoGYmluYXJ5QGRKEAAAAAAAAAAAAAAAAAAPQkBSEAAAAAAAAAAAAAAAAAAehIBYAWJBVVuRHWSNY1e3bigbVKd9i6ci4f1LruDC7AUtXDLirHlsmTDZXqjSMGLio1ziTmxYJiLj+Jht5RoZxFKqFncOIQA=
→˓"}}

Note Nonce is an very important attribute in a transaction. It‘s designed to prevent
replay attacks. For a given account, only after its transaction with nonce N is
accepted, will its transaction with nonce N+1 be processed. Thus, we have to
check the latest nonce of the account on chain before preparing a new transaction.

Then, send the raw data to an online Nebulas node.

> curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/rawtransaction -d '{"data":
→˓"CiAbjMP5dyVsTWILfXL1MbwZ8Q6xOgX/JKinks1dpToSdxIaGVcH+WT/
→˓SVMkY18ix7SG4F1+Z8evXJoA35caGhlXbip8PupTNxwV4SRM87r798jXWADXpWngIhAAAAAAAAAAAA3gtrOnZAAAKAEwuKuC1wU6CAoGYmluYXJ5QGRKEAAAAAAAAAAAAAAAAAAPQkBSEAAAAAAAAAAAAAAAAAAehIBYAWJBVVuRHWSNY1e3bigbVKd9i6ci4f1LruDC7AUtXDLirHlsmTDZXqjSMGLio1ziTmxYJiLj+Jht5RoZxFKqFncOIQA=
→˓"}'

{"result":{"txhash":
→˓"1b8cc3f977256c4d620b7d72f531bc19f10eb13a05ff24a8a792cd5da53a1277
→˓","contract_address":""}}âŔŐ

Send with Passphrase

If you trust a Nebulas node so much that you can delegate your keystore files to it, the
second method is a good fit for you.

First, upload your keystore files to the keydir folders in the trusted Nebulas node.

Then, send the transaction with your passphrase.

> curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/transactionWithPassphrase -d '{
→˓"transaction":{"from":"n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE","to":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5", "value":
→˓"1000000000000000000","nonce":2,"gasPrice":"20000000000","gasLimit
→˓":"2000000"},"passphrase":"passphrase"}'

2.4. Get Involved 67

https://en.wikipedia.org/wiki/Replay_attack

nebulas Documentation, ìűIJìŃIJ 1.0

{"result":{"txhash":
→˓"3cdd38a66c8f399e2f28134e0eb556b292e19d48439f6afde384ca9b60c27010
→˓","contract_address":""}}

Note Because we have sent a transaction with nonce 1 from the account
n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE, new transaction with same
from should be increased by 1, namely 2.

Unlock & Send

This is the most dangerous method. You probably shouldnâĂŹt use it unless you have
complete trust in the receiving Nebulas node.

First, upload your keystore files to the keydir folders in the trusted Nebulas node.

Then unlock your accounts with your passphrase for a given duration in the node. The
unit of the duration is nano seconds (300000000000=300s).

> curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/account/unlock -d '{"address":
→˓"n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE","passphrase":"passphrase",
→˓"duration":"300000000000"}'

{"result":{"result":true}}

After unlocking the account, everyone is able to send any transaction directly within the
duration in that node without your authorization.

> curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/transaction -d '{"from":
→˓"n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE","to":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5", "value":
→˓"1000000000000000000","nonce":3,"gasPrice":"20000000000","gasLimit
→˓":"2000000"}'

{"result":{"txhash":
→˓"8d69dea784f0edfb2ee678c464d99e155bca04b3d7e6cdba6c5c189f731110cf
→˓","contract_address":""}}âŔŐ

Transaction Receipt

We‘ll get a txhash in three methods after sending a transaction successfully. The
txhash value can be used to query the transaction status.

2.4. Get Involved 68

nebulas Documentation, ìűIJìŃIJ 1.0

> curl -i -H Accept:application/json -X POST http://localhost:8685/
→˓v1/user/getTransactionReceipt -d '{"hash":
→˓"8d69dea784f0edfb2ee678c464d99e155bca04b3d7e6cdba6c5c189f731110cf
→˓"}'

{"result":{"hash":
→˓"8d69dea784f0edfb2ee678c464d99e155bca04b3d7e6cdba6c5c189f731110cf
→˓","chainId":100,"from":"n1FF1nz6tarkDVwWQkMnnwFPuPKUaQTdptE","to":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5","value":"1000000000000000000
→˓","nonce":"3","timestamp":"1524667888","type":"binary","data
→˓":null,"gas_price":"20000000000","gas_limit":"2000000","contract_
→˓address":"","status":1,"gas_used":"20000"}}âŔŐ

The status fields may be 0, 1 or 2.

• 0: Failed. It means the transaction has been submitted on chain but its execution failed.

• 1: Successful. It means the transaction has been submitted on chain and its execution
successeed.

• 2: Pending. It means the transaction hasn‘t been packed into a block.

Double Check

Let‘s double check the receiver‘s balance.

> curl -i -H Accept:application/json -X POST http://localhost:8685/
→˓v1/user/accountstate -d '{"address":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5"}'

{"result":{"balance":"3000000000000000000","nonce":"0","type":87,
→˓"height":"10","pending":"0"}}

Here you should see a balance that is the total of all the successful transfers that you
executed.

Next step: Tutorial 3

Write and run a smart contract with JavaScript

Nebulas 101 - 03 Write and run a smart contract

YouTube Tutorial

Through this tutorial we will learn how to write, deploy, and execute smart contracts in
Nebulas.

2.4. Get Involved 69

https://www.youtube.com/watch?v=0ut_RcFyQGM

nebulas Documentation, ìűIJìŃIJ 1.0

Preparation

Before entering the smart contract, first review the previously learned content:

1. Install, compile and start neb application

2. Create a wallet address, setup coinbase, and start mining

3. Query neb node information, wallet address and balance

4. Send a transaction and verify the transaction was successful

If who have doubts about the above content you should go back to the previous chapters.
So lets do this. We will learn and use smart contracts through the following steps:

1. Write a smart contract

2. Deploy the smart contract

3. Call the smart contract, and verify the contract execution results

Write a smart contract

Like Ethereum, Nebulas implements NVM virtual machines to run smart contracts, and
the NVM implementation uses the JavaScript V8 engine, so for the current development we
can write smart contracts using JavaScript and TypeScript.

Write a brief specification of a smart contract:

1. The Smart contract code must be a Prototype object;

2. The Smart contract code must have a init() method, this method will only be executed
once during deployment;

3. The private methods in Smart contract must be prefixed with _ , and the private method
cannot be a be directly called outside of the contract;

Below we use JavaScript to write the first smart contract: bank safe. This smart contract
needs to fulfill the following functions:

1. The user can save money from this bank safe.

2. Users can withdraw money from this bank safe.

3. Users can check the balance in the bank safe.

Smart contract example:

'use strict';

var DepositeContent = function (text) {
if (text) {

var o = JSON.parse(text);
this.balance = new BigNumber(o.balance);
this.expiryHeight = new BigNumber(o.expiryHeight);

} else {

2.4. Get Involved 70

nebulas Documentation, ìűIJìŃIJ 1.0

this.balance = new BigNumber(0);
this.expiryHeight = new BigNumber(0);

}
};

DepositeContent.prototype = {
toString: function () {

return JSON.stringify(this);
}

};

var BankVaultContract = function () {
LocalContractStorage.defineMapProperty(this, "bankVault", {

parse: function (text) {
return new DepositeContent(text);

},
stringify: function (o) {
return o.toString();

}
});

};

// save value to contract, only after height of block, users can
→˓takeout
BankVaultContract.prototype = {

init: function () {
//TODO:

},

save: function (height) {
var from = Blockchain.transaction.from;
var value = Blockchain.transaction.value;
var bk_height = new BigNumber(Blockchain.block.height);

var orig_deposit = this.bankVault.get(from);
if (orig_deposit) {

value = value.plus(orig_deposit.balance);
}

var deposit = new DepositeContent();
deposit.balance = value;
deposit.expiryHeight = bk_height.plus(height);

this.bankVault.put(from, deposit);
},

takeout: function (value) {
var from = Blockchain.transaction.from;
var bk_height = new BigNumber(Blockchain.block.height);
var amount = new BigNumber(value);

2.4. Get Involved 71

nebulas Documentation, ìűIJìŃIJ 1.0

var deposit = this.bankVault.get(from);
if (!deposit) {

throw new Error("No deposit before.");
}

if (bk_height.lt(deposit.expiryHeight)) {
throw new Error("Can not takeout before expiryHeight.");

}

if (amount.gt(deposit.balance)) {
throw new Error("Insufficient balance.");

}

var result = Blockchain.transfer(from, amount);
if (!result) {

throw new Error("transfer failed.");
}
Event.Trigger("BankVault", {

Transfer: {
from: Blockchain.transaction.to,
to: from,
value: amount.toString()

}
});

deposit.balance = deposit.balance.sub(amount);
this.bankVault.put(from, deposit);

},
balanceOf: function () {
var from = Blockchain.transaction.from;
return this.bankVault.get(from);

},
verifyAddress: function (address) {

// 1-valid, 0-invalid
var result = Blockchain.verifyAddress(address);
return {
valid: result == 0 ? false : true

};
}

};
module.exports = BankVaultContract;

As you can see from the smart contract example above, BankVaultContract is a pro-
totype object that has an init() method. It satisfies the most basic specification for writing smart
contracts that we have described before. BankVaultContract implements two other methods:

• save(): The user can save money to the bank safe by calling the save() method;

• takeout(): Users can withdraw money from bank safe by calling takeout() method;

• balanceOf(): The user can check the balance with the bank vault by calling the bal-

2.4. Get Involved 72

nebulas Documentation, ìűIJìŃIJ 1.0

anceOf() method;

The contract code above uses the built-in Blockchain object and the built-in
BigNumber() method. Let‘s break down the parsing contract code line by line:

save():

// Deposit the amount into the safe

save: function (height) {
var from = Blockchain.transaction.from;
var value = Blockchain.transaction.value;
var bk_height = new BigNumber(Blockchain.block.height);

var orig_deposit = this.bankVault.get(from);
if (orig_deposit) {

value = value.plus(orig_deposit.balance);
}
var deposit = new DepositeContent();
deposit.balance = value;
deposit.expiryHeight = bk_height.plus(height);

this.bankVault.put(from, deposit);
},

takeout ():

takeout: function (value) {
var from = Blockchain.transaction.from;
var bk_height = new BigNumber(Blockchain.block.height);
var amount = new BigNumber(value);

var deposit = this.bankVault.get(from);
if (!deposit) {

throw new Error("No deposit before.");
}

if (bk_height.lt(deposit.expiryHeight)) {
throw new Error("Can not takeout before expiryHeight.");

}

if (amount.gt(deposit.balance)) {
throw new Error("Insufficient balance.");

}

var result = Blockchain.transfer(from, amount);
if (!result) {

throw new Error("transfer failed.");
}
Event.Trigger("BankVault", {

Transfer: {
from: Blockchain.transaction.to,

2.4. Get Involved 73

nebulas Documentation, ìűIJìŃIJ 1.0

to: from,
value: amount.toString()

}
});

deposit.balance = deposit.balance.sub(amount);
this.bankVault.put(from, deposit);

},

Deploy smart contracts

The above describes how to write a smart contract in Nebulas, and now we need to de-
ploy the smart contract to the chain. Earlier, we have introduced how to make a transaction in
Nebulas, and we used the sendTransaction() interface to initiate a transfer. Deploying a smart
contract in Nebulas is actually achieved by sending a transaction by calling the sendTransac-
tion() interface, just with different parameters.

// transaction - from, to, value, nonce, gasPrice, gasLimit,
→˓contract
sendTransactionWithPassphrase(transaction, passphrase)

We have a convention that if from and to are the same address, contract is not null
and binary is null, we assume that we are deploying a smart contract.

• from: the creator‘s address

• to: the creator‘s address

• value: it should be "0" when deploying the contract;

• nonce: it should be 1 more than the current nonce in the creator‘s account state, which
can ben obtained via GetAccountState.

• gasPrice: The gasPrice used to deploy the smart contract, which can be obtained via
GetGasPrice, or using default values: "20000000000";

• gasLimit: The gasLimit for deploying the contract. You can get the estimated gas
consumption for the deployment via EstimateGas, and cannot use the default value.
And you could also set a larger value. The actual gas consumption is decided by the
deployment execution.

• contract: the contract information, the parameters passed in when the contract is
deployed

– source: contract code

– sourceType: Contract code type, js and ts (corresponding to javaScript and
typeScript code)

– args: parameters for the contract initialization method. Use empty string if there
is no parameter, and use JSON array if there is a parameter.

2.4. Get Involved 74

https://github.com/nebulasio/wiki/blob/master/rpc.md#getaccountstate
https://github.com/nebulasio/wiki/blob/master/rpc.md#getgasprice
https://github.com/nebulasio/wiki/blob/master/rpc.md#estimateGas

nebulas Documentation, ìűIJìŃIJ 1.0

Detailed Interface Documentation API.

Example of deploying a smart contract using curl:

> curl -i -H 'Accept: application/json' -X POST http://
→˓localhost:8685/v1/admin/transactionWithPassphrase -H 'Content-
→˓Type: application/json' -d '{"transaction": {"from":
→˓"n1H4MYms9F55ehcvygwWE71J8tJC4CRr2so","to":
→˓"n1H4MYms9F55ehcvygwWE71J8tJC4CRr2so", "value":"0","nonce":1,
→˓"gasPrice":"20000000000","gasLimit":"2000000","contract":{"source
→˓":"\"use strict\";var DepositeContent=function(text){if(text){var
→˓o=JSON.parse(text);this.balance=new BigNumber(o.balance);this.
→˓expiryHeight=new BigNumber(o.expiryHeight);}else{this.balance=new
→˓BigNumber(0);this.expiryHeight=new BigNumber(0);}};
→˓DepositeContent.prototype={toString:function(){return JSON.
→˓stringify(this);}};var BankVaultContract=function()
→˓{LocalContractStorage.defineMapProperty(this,\"bankVault\",
→˓{parse:function(text){return new DepositeContent(text);},
→˓stringify:function(o){return o.toString();}});};BankVaultContract.
→˓prototype={init:function(){},save:function(height){var
→˓from=Blockchain.transaction.from;var value=Blockchain.transaction.
→˓value;var bk_height=new BigNumber(Blockchain.block.height);var
→˓orig_deposit=this.bankVault.get(from);if(orig_deposit)
→˓{value=value.plus(orig_deposit.balance);} var deposit=new
→˓DepositeContent();deposit.balance=value;deposit.expiryHeight=bk_
→˓height.plus(height);this.bankVault.put(from,deposit);},
→˓takeout:function(value){var from=Blockchain.transaction.from;var
→˓bk_height=new BigNumber(Blockchain.block.height);var amount=new
→˓BigNumber(value);var deposit=this.bankVault.get(from);if(!deposit)
→˓{throw new Error(\"No deposit before.\");} if(bk_height.
→˓lt(deposit.expiryHeight)){throw new Error(\"Can not takeout
→˓before expiryHeight.\");} if(amount.gt(deposit.balance)){throw
→˓new Error(\"Insufficient balance.\");} var result=Blockchain.
→˓transfer(from,amount);if(!result){throw new Error(\"transfer
→˓failed.\");} Event.Trigger(\"BankVault\",{Transfer:
→˓{from:Blockchain.transaction.to,to:from,value:amount.toString()}}
→˓);deposit.balance=deposit.balance.sub(amount);this.bankVault.
→˓put(from,deposit);},balanceOf:function(){var from=Blockchain.
→˓transaction.from;return this.bankVault.get(from);},
→˓verifyAddress:function(address){var result=Blockchain.
→˓verifyAddress(address);return{valid:result==0?false:true};}};
→˓module.exports=BankVaultContract;","sourceType":"js", "args":""}},
→˓ "passphrase": "passphrase"}'

{"result":{"txhash":
→˓"aaebb86d15ca30b86834efb600f82cbcaf2d7aaffbe4f2c8e70de53cbed17889
→˓","contract_address":"n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM"}}

The return value for deploying a smart contract is the transaction‘s hash address txhash
and the contract‘s deployment address contract_address. Get the return value does not
guarantee the successful deployment of the contract, because the sendTransaction () is an asyn-

2.4. Get Involved 75

https://github.com/nebulasio/wiki/blob/master/rpc_admin.md#sendtransactionwithpassphrase

nebulas Documentation, ìűIJìŃIJ 1.0

chronous process, which need to be packaged by the miner. Just as the previous transfer trans-
action, the transfer does not arrive in real time, it depends on the speed of the miner packing.
Therefore we need to wait for a while (about 1 minute), then you can verify whether the contract
is deployed successfully by querying the contract address or calling this smart contract.

Verify the deployment of the contract is successful

Check the receipt of the deploy transaction via GetTransactionReceipt to
verify whether the contract has been deployed successfully.

> curl -i -H 'Content-Type: application/json' -X POST http:/
→˓/localhost:8685/v1/user/getTransactionReceipt -d '{"hash":
→˓"aaebb86d15ca30b86834efb600f82cbcaf2d7aaffbe4f2c8e70de53cbed17889
→˓"}'

{"result":{"hash":
→˓"aaebb86d15ca30b86834efb600f82cbcaf2d7aaffbe4f2c8e70de53cbed17889
→˓","chainId":100,"from":
→˓"n1H4MYms9F55ehcvygwWE71J8tJC4CRr2so","to":
→˓"n1H4MYms9F55ehcvygwWE71J8tJC4CRr2so","value":"0","nonce":
→˓"1","timestamp":"1524711841","type":"deploy","data":
→˓"eyJTb3VyY2VUeXBlIjoianMiLCJTb3VyY2UiOiJcInVzZSBzdHJpY3RcIjt2YXIgRGVwb3NpdGVDb250ZW50PWZ1bmN0aW9uKHRleHQpe2lmKHRleHQpe3ZhciBvPUpTT04ucGFyc2UodGV4dCk7dGhpcy5iYWxhbmNlPW5ldyBCaWdOdW1iZXIoby5iYWxhbmNlKTt0aGlzLmV4cGlyeUhlaWdodD1uZXcgQmlnTnVtYmVyKG8uZXhwaXJ5SGVpZ2h0KTt9ZWxzZXt0aGlzLmJhbGFuY2U9bmV3IEJpZ051bWJlcigwKTt0aGlzLmV4cGlyeUhlaWdodD1uZXcgQmlnTnVtYmVyKDApO319O0RlcG9zaXRlQ29udGVudC5wcm90b3R5cGU9e3RvU3RyaW5nOmZ1bmN0aW9uKCl7cmV0dXJuIEpTT04uc3RyaW5naWZ5KHRoaXMpO319O3ZhciBCYW5rVmF1bHRDb250cmFjdD1mdW5jdGlvbigpe0xvY2FsQ29udHJhY3RTdG9yYWdlLmRlZmluZU1hcFByb3BlcnR5KHRoaXMsXCJiYW5rVmF1bHRcIix7cGFyc2U6ZnVuY3Rpb24odGV4dCl7cmV0dXJuIG5ldyBEZXBvc2l0ZUNvbnRlbnQodGV4dCk7fSxzdHJpbmdpZnk6ZnVuY3Rpb24obyl7cmV0dXJuIG8udG9TdHJpbmcoKTt9fSk7fTtCYW5rVmF1bHRDb250cmFjdC5wcm90b3R5cGU9e2luaXQ6ZnVuY3Rpb24oKXt9LHNhdmU6ZnVuY3Rpb24oaGVpZ2h0KXt2YXIgZnJvbT1CbG9ja2NoYWluLnRyYW5zYWN0aW9uLmZyb207dmFyIHZhbHVlPUJsb2NrY2hhaW4udHJhbnNhY3Rpb24udmFsdWU7dmFyIGJrX2hlaWdodD1uZXcgQmlnTnVtYmVyKEJsb2NrY2hhaW4uYmxvY2suaGVpZ2h0KTt2YXIgb3JpZ19kZXBvc2l0PXRoaXMuYmFua1ZhdWx0LmdldChmcm9tKTtpZihvcmlnX2RlcG9zaXQpe3ZhbHVlPXZhbHVlLnBsdXMob3JpZ19kZXBvc2l0LmJhbGFuY2UpO30gdmFyIGRlcG9zaXQ9bmV3IERlcG9zaXRlQ29udGVudCgpO2RlcG9zaXQuYmFsYW5jZT12YWx1ZTtkZXBvc2l0LmV4cGlyeUhlaWdodD1ia19oZWlnaHQucGx1cyhoZWlnaHQpO3RoaXMuYmFua1ZhdWx0LnB1dChmcm9tLGRlcG9zaXQpO30sdGFrZW91dDpmdW5jdGlvbih2YWx1ZSl7dmFyIGZyb209QmxvY2tjaGFpbi50cmFuc2FjdGlvbi5mcm9tO3ZhciBia19oZWlnaHQ9bmV3IEJpZ051bWJlcihCbG9ja2NoYWluLmJsb2NrLmhlaWdodCk7dmFyIGFtb3VudD1uZXcgQmlnTnVtYmVyKHZhbHVlKTt2YXIgZGVwb3NpdD10aGlzLmJhbmtWYXVsdC5nZXQoZnJvbSk7aWYoIWRlcG9zaXQpe3Rocm93IG5ldyBFcnJvcihcIk5vIGRlcG9zaXQgYmVmb3JlLlwiKTt9IGlmKGJrX2hlaWdodC5sdChkZXBvc2l0LmV4cGlyeUhlaWdodCkpe3Rocm93IG5ldyBFcnJvcihcIkNhbiBub3QgdGFrZW91dCBiZWZvcmUgZXhwaXJ5SGVpZ2h0LlwiKTt9IGlmKGFtb3VudC5ndChkZXBvc2l0LmJhbGFuY2UpKXt0aHJvdyBuZXcgRXJyb3IoXCJJbnN1ZmZpY2llbnQgYmFsYW5jZS5cIik7fSB2YXIgcmVzdWx0PUJsb2NrY2hhaW4udHJhbnNmZXIoZnJvbSxhbW91bnQpO2lmKCFyZXN1bHQpe3Rocm93IG5ldyBFcnJvcihcInRyYW5zZmVyIGZhaWxlZC5cIik7fSBFdmVudC5UcmlnZ2VyKFwiQmFua1ZhdWx0XCIse1RyYW5zZmVyOntmcm9tOkJsb2NrY2hhaW4udHJhbnNhY3Rpb24udG8sdG86ZnJvbSx2YWx1ZTphbW91bnQudG9TdHJpbmcoKX19KTtkZXBvc2l0LmJhbGFuY2U9ZGVwb3NpdC5iYWxhbmNlLnN1YihhbW91bnQpO3RoaXMuYmFua1ZhdWx0LnB1dChmcm9tLGRlcG9zaXQpO30sYmFsYW5jZU9mOmZ1bmN0aW9uKCl7dmFyIGZyb209QmxvY2tjaGFpbi50cmFuc2FjdGlvbi5mcm9tO3JldHVybiB0aGlzLmJhbmtWYXVsdC5nZXQoZnJvbSk7fSx2ZXJpZnlBZGRyZXNzOmZ1bmN0aW9uKGFkZHJlc3Mpe3ZhciByZXN1bHQ9QmxvY2tjaGFpbi52ZXJpZnlBZGRyZXNzKGFkZHJlc3MpO3JldHVybnt2YWxpZDpyZXN1bHQ9PTA/
→˓ZmFsc2U6dHJ1ZX07fX07bW9kdWxlLmV4cG9ydHM9QmFua1ZhdWx0Q29udHJhY3Q7IiwiQXJncyI6IiJ9
→˓","gas_price":"20000000000","gas_limit":"2000000",
→˓"contract_address":"n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM",
→˓"status":1,"gas_used":"22016"}}

As shown above, the status of the deploy transaction becomes 1. It means the
contract has been deployed successfully.

Execute Smart Contract Method

The way to execute a smart contract method in Nebulas is also straightforward, using the
sendTransactionWithPassphrase() method to invoke the smart contract method directly.

// transaction - from, to, value, nonce, gasPrice, gasLimit,
→˓contract
sendTransactionWithPassphrase(transaction, passphrase)

• from: the user‘s account address

• to: the smart contract address

• value: The amount of money used to transfer by smart contract.

• nonce: it should be 1 more than the current nonce in the creator‘s account state, which
can ben obtained via GetAccountState.

• gasPrice: The gasPrice used to deploy the smart contract, which can be obtained via
GetGasPrice, or using default values "20000000000";

2.4. Get Involved 76

https://github.com/nebulasio/wiki/blob/master/rpc.md#gettransactionreceipt
https://github.com/nebulasio/wiki/blob/master/rpc.md#getaccountstate
https://github.com/nebulasio/wiki/blob/master/rpc.md#getgasprice

nebulas Documentation, ìűIJìŃIJ 1.0

• gasLimit: The gasLimit for deploying the contract. You can get the estimated gas
consumption for the deployment via EstimateGas, and cannot use the default value.
And you could also set a larger value. The actual gas consumption is decided by the
deployment execution.

• contract: the contract information, the parameters passed in when the contract is
deployed

– function:the contract method to be called

– args: parameters for the contract initialization method. Use empty string if there
is no parameter, and use JSON array if there is a parameter.

For example, execute save() method of the smart contract:

> curl -i -H 'Accept: application/json' -X POST http://
→˓localhost:8685/v1/admin/transactionWithPassphrase -H 'Content-
→˓Type: application/json' -d '{"transaction":{"from":
→˓"n1LkDi2gGMqPrjYcczUiweyP4RxTB6Go1qS","to":
→˓"n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM", "value":"100","nonce":1,
→˓"gasPrice":"20000000000","gasLimit":"2000000","contract":{
→˓"function":"save","args":"[0]"}}, "passphrase": "passphrase"}'

{"result":{"txhash":
→˓"5337f1051198b8ac57033fec98c7a55e8a001dbd293021ae92564d7528de3f84
→˓","contract_address":""}}

Verify the execution of the contract method save is successful Execut-
ing a contract method is actually submitting a transaction on chain as well.
We can verify the result through checking the receipt of the transaction via
GetTransactionReceipt.

> curl -i -H 'Content-Type: application/json' -X POST http:/
→˓/localhost:8685/v1/user/getTransactionReceipt -d '{"hash":
→˓"5337f1051198b8ac57033fec98c7a55e8a001dbd293021ae92564d7528de3f84
→˓"}'

{"result":{"hash":
→˓"5337f1051198b8ac57033fec98c7a55e8a001dbd293021ae92564d7528de3f84
→˓","chainId":100,"from":
→˓"n1LkDi2gGMqPrjYcczUiweyP4RxTB6Go1qS","to":
→˓"n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM","value":"100","nonce
→˓":"1","timestamp":"1524712532","type":"call","data":
→˓"eyJGdW5jdGlvbiI6InNhdmUiLCJBcmdzIjoiWzBdIn0=","gas_price
→˓":"20000000000","gas_limit":"2000000","contract_address":"
→˓","status":1,"gas_used":"20361"}}

As shown above, the status of the transaction becomes 1. It means the contract
method has been executed successfully.

Execute the smart contract takeout() method:

2.4. Get Involved 77

https://github.com/nebulasio/wiki/blob/master/rpc.md#estimateGas
https://github.com/nebulasio/wiki/blob/master/rpc.md#gettransactionreceipt

nebulas Documentation, ìűIJìŃIJ 1.0

> curl -i -H 'Accept: application/json' -X POST http://
→˓localhost:8685/v1/admin/transactionWithPassphrase -H 'Content-
→˓Type: application/json' -d '{"transaction":{"from":
→˓"n1LkDi2gGMqPrjYcczUiweyP4RxTB6Go1qS","to":
→˓"n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM", "value":"0","nonce":2,
→˓"gasPrice":"20000000000","gasLimit":"2000000","contract":{
→˓"function":"takeout","args":"[50]"}}, "passphrase": "passphrase"}'

{"result":{"txhash":
→˓"46a307e9beb21f52992a7512f3705fe58ee6c1887122a1b52f5ce5fd5f536a91
→˓","contract_address":""}}

Verify the execution of the contract method takeout is successful In the ex-
ecution of the above contract method save, we save 100 NAS into the smart
contract n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM. Using the contract
method takeout, we‘ll withdrawn 50 NAS from the 100 NAS. The balance of
the smart contract should be 50 NAS now.

> curl -i -H 'Content-Type: application/json' -X POST http:/
→˓/localhost:8685/v1/user/accountstate -d '{"address":
→˓"n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM"}'

{"result":{"balance":"50","nonce":"0","type":88}}

The result is as expected.

Query Smart Contract Data

In a smart contract, the execution of some methods won‘t change anything on chain. These
methods are designed to help us query data in readonly mode from blockchains. In Nebulas,
we provide an API call for users to execute these readonly methods.

// transaction - from, to, value, nonce, gasPrice, gasLimit,
→˓contract
call(from, to, value, nonce, gasPrice, gasLimit, contract)

The parameters of call is the same as the parameters of executing a contract method .

Call the smart contract method balanceOf:

> curl -i -H 'Accept: application/json' -X POST http://
→˓localhost:8685/v1/user/call -H 'Content-Type: application/json' -
→˓d '{"from":"n1LkDi2gGMqPrjYcczUiweyP4RxTB6Go1qS","to":
→˓"n1rVLTRxQEXscTgThmbTnn2NqdWFEKwpYUM","value":"0","nonce":3,
→˓"gasPrice":"20000000000","gasLimit":"2000000","contract":{
→˓"function":"balanceOf","args":""}}'

{"result":{"result":"{\"balance\":\"50\",\"expiryHeight\":\"84\"}",
→˓"execute_err":"","estimate_gas":"20209"}}

2.4. Get Involved 78

nebulas Documentation, ìűIJìŃIJ 1.0

Next step: Tutorial 4

Smart Contract Storage

Nebulas 101 - 04 Smart Contract Storage

YouTube Tutorial

Earlier we covered how to write smart contracts and how to deploy and invoke smart
contracts in the Nebulas.

Now we introduce in detail the storage of the smart contract. Nebulas smart contracts
provide on-chain data storage capabilities. Similar to the traditional key-value storage system
(eg: redis), smart contracts can be stored on the Nebulas by paying with (gas).

LocalContractStorage

Nebulas‘ Smart Contract environment has built-in storage object
LocalContractStorage, which can store numbers, strings, and JavaScript objects.
The stored data can only be used in smart contracts. Other contracts can not read the stored
data.

Basics

The LocalContractStorage API includes set, get and del, which allow you to
store, read, and delete data. Storage can be numbers, strings, objects

Storing LocalContractStorage DataïijŽ

// store data. The data will be stored as JSON strings
LocalContractStorage.put(key, value);
// Or
LocalContractStorage.set(key, value);

Reading LocalContractStorage DataïijŽ

// get the value from key
LocalContractStorage.get(key);

2.4. Get Involved 79

https://www.youtube.com/watch?v=Ofs4AyRaSlw

nebulas Documentation, ìűIJìŃIJ 1.0

Deleting LocalContractStorage DataïijŽ

// delete data, data can not be read after deletion
LocalContractStorage.del(key);
// Or
LocalContractStorage.delete(key);

Examples:

'use strict';

var SampleContract = function () {
};

SampleContract.prototype = {
init: function () {
},
set: function (name, value) {

// Storing a string
LocalContractStorage.set("name",name);
// Storing a number (value)
LocalContractStorage.set("value", value);
// Storing an objects
LocalContractStorage.set("obj", {name:name, value:value});

},
get: function () {

var name = LocalContractStorage.get("name");
console.log("name:" + name)
var value = LocalContractStorage.get("value");
console.log("value:" + value)
var obj = LocalContractStorage.get("obj");
console.log("obj:" + JSON.stringify(obj))

},
del: function () {

var result = LocalContractStorage.del("name");
console.log("del result:" + result)

}
};

module.exports = SampleContract;

Advanced

In addition to the basic set, get, and del methods, LocalContractStorage also
provides methods to bind properties of smart contracts. We could read and write binded prop-
erties directly without invoking LocalContractStorage interfaces to get and set.

2.4. Get Involved 80

nebulas Documentation, ìűIJìŃIJ 1.0

Binding Properties

Object instance, field name and descriptor should be provided to bind properties.

Binding Interface

// define a object property named `fieldname` to `obj` with
→˓descriptor.
// default descriptor is JSON.parse/JSON.stringify descriptor.
// return this.
defineProperty(obj, fieldName, descriptor);

// define object properties to `obj` from `props`.
// default descriptor is JSON.parse/JSON.stringify descriptor.
// return this.
defineProperties(obj, descriptorMap);

Here is an example to bind properties in a smart contract.

'use strict';

var SampleContract = function () {
// The SampleContract `size` property is a storage property.

→˓Reads and writes to` size` will be stored on the chain.
// The `descriptor` is set to null here, the default JSON.

→˓stringify () and JSON.parse () will be used.
LocalContractStorage.defineMapProperty(this, "size");

// The SampleContract `value` property is a storage property.
→˓Reads and writes to` value` will be stored on the chain.

// Here is a custom `descriptor` implementation, storing as a
→˓string, and returning Bignumber object during parsing.

LocalContractStorage.defineMapProperty(this, "value", {
stringify: function (obj) {

return obj.toString();
},
parse: function (str) {

return new BigNumber(str);
}

});
// Multiple properties of SampleContract are set as storage

→˓properties in batches, and the corresponding descriptors use JSON
→˓serialization by default

LocalContractStorage.defineProperties(this, {
name: null,
count: null

});
};

module.exports = SampleContract;

2.4. Get Involved 81

nebulas Documentation, ìűIJìŃIJ 1.0

Then, we can read and write these properties directly as the following example.

SampleContract.prototype = {
// Used when the contract first deploys, can not be used a

→˓second after the first deploy.
init: function (name, count, size, value) {

// Store the data on the chain when deploying the contract
this.name = name;
this.count = count;
this.size = size;
this.value = value;

},
testStorage: function (balance) {

// value will be read from the storage data on the chain,
→˓and automatically converted to Bignumber set according to the
→˓descriptor

var amount = this.value.plus(new BigNumber(2));
if (amount.lessThan(new BigNumber(balance))) {

return 0
}

}
};

Binding Map Properties

What‘s more, LocalContractStorage also provides methods to bind map proper-
ties. Here is an example to bind map properties and use them in a smart contract.

'use strict';

var SampleContract = function () {
// Set `SampleContract`'s property to `userMap`. Map data then

→˓can be stored onto the chain using `userMap`
LocalContractStorage.defineMapProperty(this, "userMap");

// Set `SampleContract`'s property to `userBalanceMap`, and
→˓custom define the storing and serializtion reading functions.

LocalContractStorage.defineMapProperty(this, "userBalanceMap", {
stringify: function (obj) {

return obj.toString();
},
parse: function (str) {

return new BigNumber(str);
}

});

// Set `SampleContract`'s properties to mulitple map batches
LocalContractStorage.defineMapProperties(this,{

key1Map: null,
key2Map: null

2.4. Get Involved 82

nebulas Documentation, ìűIJìŃIJ 1.0

});
};

SampleContract.prototype = {
init: function () {
},
testStorage: function () {

// Store the data in userMap and serialize the data onto
→˓the chain

this.userMap.set("robin","1");
// Store the data into userBalanceMap and save the data

→˓onto the chain using a custom serialization function
this.userBalanceMap.set("robin",new BigNumber(1));

},
testRead: function () {

//Read and store data
var balance = this.userBalanceMap.get("robin");
this.key1Map.set("robin", balance.toString());
this.key2Map.set("robin", balance.toString());

}
};

module.exports = SampleContract;

Iterate Map

In contract, map does‘t support iterator. if you need to iterate the map, you can use the fol-
lowing way: define two map, arrayMap, dataMap, arrayMap with a strictly increasing counter
as key, dataMap with data key as key.

"use strict";

var SampleContract = function () {
LocalContractStorage.defineMapProperty(this, "arrayMap");
LocalContractStorage.defineMapProperty(this, "dataMap");
LocalContractStorage.defineProperty(this, "size");

};

SampleContract.prototype = {
init: function () {

this.size = 0;
},

set: function (key, value) {
var index = this.size;
this.arrayMap.set(index, key);
this.dataMap.set(key, value);
this.size +=1;

},

get: function (key) {

2.4. Get Involved 83

nebulas Documentation, ìűIJìŃIJ 1.0

return this.dataMap.get(key);
},

len:function(){
return this.size;

},

iterate: function(limit, offset){
limit = parseInt(limit);
offset = parseInt(offset);
if(offset>this.size){

throw new Error("offset is not valid");
}
var number = offset+limit;
if(number > this.size){
number = this.size;

}
var result = "";
for(var i=offset;i<number;i++){

var key = this.arrayMap.get(i);
var object = this.dataMap.get(key);
result += "index:"+i+" key:"+ key + " value:" +object+"_

→˓";
}
return result;

}

};

module.exports = SampleContract;

Next step: Tutorial 5

Interacting with Nebulas by RPC API

Nebulas 101 - 05 Interacting with Nebulas by RPC API

YouTube Tutorial

Nebulas chain node can be accessed and controlled remotely through RPC. Nebulas chain
provides a series of APIs to get node information, account balances, send transactions and
deploy calls to smart contracts.

The remote access to the Nebulas chain is implemented by gRPC, and also could be ac-
cessed by HTTP via the proxy (grpc-gateway). HTTP access is a interface implemented by
RESTful, with the same parameters as the gRPC interface.

2.4. Get Involved 84

https://www.youtube.com/watch?v=to3tkwFjVXo
https://grpc.io
https://github.com/grpc-ecosystem/grpc-gateway

nebulas Documentation, ìűIJìŃIJ 1.0

API

We‘ve implemented RPC server and HTTP sercer to provide API service in Go-Nebulas.

Modules

All interfaces are divided into two modules: API and Admin.

• API: Provides interfaces that are not related to the user‘s private key.

• Admin: Provides interfaces that are related to the user‘s private key.

It‘s recommended for all Nebulas nodes to open API module for public users and Admin
module for authorized users.

Configuration

RPC server and HTTP server can be configured in the configuration file of each Nebulas
node.

rpc {
gRPC API service port
rpc_listen: ["127.0.0.1:8684"]
HTTP API service port
http_listen: ["127.0.0.1:8685"]
Open module that can provide http service to outside
http_module: ["api", "admin"]

}

Example

HTTP

Here is some examples to invoke HTTP interfaces using curl.

GetNebState

We can invoke GetNebState in API module to fetch the current state of local Nebulas
node, including chain identity, tail block, protocl version and so on.

> curl -i -H Accept:application/json -X GET http://localhost:8685/
→˓v1/user/nebstate

{"result":{"chain_id":100,"tail":
→˓"0aa1cceb7801b110fdd5217ba0a4356780c940133924d1c1a4eb60336934dab1
→˓","lib":
→˓"00
→˓","height":"479","protocol_version":"/neb/1.0.0","synchronized
→˓":false,"version":"0.7.0"}}

2.4. Get Involved 85

nebulas Documentation, ìűIJìŃIJ 1.0

UnlockAccount

We can invoke UnlockAccount in Admin module to unlock an account in memory. All
unlocked accounts can be used to send transactions directly without passphrases.

> curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/account/unlock -d '{"address":
→˓"n1NrMKTYESZRCwPFDLFKiKREzZKaN1nhQvz", "passphrase": "passphrase"}
→˓'

{"result":{"result":true}}

RPC

RPC server is implemented with GRPC. The serialization of GPRC is based on Protocol
Buffers. You can find all rpc protobuf files in Nebulas RPC Protobuf Folder.

Here is some examples to invoke rpc interfaces using golang.

GetNebState

We can invoke GetNebState in API module to fetch the current state of local Nebulas
node.

import(
"github.com/nebulasio/go-nebulas/rpc"
"github.com/nebulasio/go-nebulas/rpc/pb"

)

// GRPC server connection address configuration
addr := fmt.Sprintf("127.0.0.1:%d",uint32(8684))
conn, err := grpc.Dial(addr, grpc.WithInsecure())
if err != nil {

log.Warn("rpc.Dial() failed:", err)
}
defer conn.Close()

// API interface to access node status information
api := rpcpb.NewAPIServiceClient(conn)
resp, err := ac.GetNebState(context.Background(), & rpcpb.
→˓GetNebStateRequest {})
if err != nil {

log.Println("GetNebState", "failed", err)
} else {

log.Println("GetNebState tail", resp)
}

LockAccount

2.4. Get Involved 86

https://grpc.io/
https://github.com/google/protobuf
https://github.com/google/protobuf
https://github.com/nebulasio/go-nebulas/tree/develop/rpc/pb

nebulas Documentation, ìűIJìŃIJ 1.0

Account n1NrMKTYESZRCwPFDLFKiKREzZKaN1nhQvz has been unlocked after
invoking v1/admin/account/unlock via HTTP request above. We can invoke
LockAccount in Admin module to lock it again.

import(
"github.com/nebulasio/go-nebulas/rpc"
"github.com/nebulasio/go-nebulas/rpc/pb"

)

// GRPC server connection address configuration
addr := fmt.Sprintf("127.0.0.1:%d",uint32(8684))
conn, err := grpc.Dial(addr, grpc.WithInsecure())
if err != nil {

log.Warn("rpc.Dial() failed:", err)
}
defer conn.Close()

// Admin interface to access, lock account address
admin := rpcpb.NewAdminServiceClient(conn)
from := "n1NrMKTYESZRCwPFDLFKiKREzZKaN1nhQvz"
resp, err = management.LockAccount(context.Background(), & rpcpb.
→˓LockAccountRequest {Address: from})
if err != nil {

log.Println("LockAccount", from, "failed", err)
} else {

log.Println("LockAccount", from, "result", resp)
}

API List

For more interfaces, please refer to the official documentation:

• API Module

• Admin Module.

Next

Good job! Now let‘s join the official Testnet and/or Mainnet to experience Nebulas to the
fullest!

Join the Testnet & Join the Mainnet

Todo List

Go-Nebulas

• åÿőåŁl’æţŃèŕŢNebulasïijŇèől’NebulasæŻt’åŁăåĄěåčőïijŇæŻt’åd’ŽèŕęæČĚ

2.4. Get Involved 87

https://github.com/nebulasio/go-nebulas/tree/develop/nebtestkit

nebulas Documentation, ìűIJìŃIJ 1.0

• åÿőåŁl’NebulasåijĂåŔŚåd’Žèŕ èĺĂçŽĎsdkåžŞïijŇåęĆNode, Ruby, Python, Php,
Javaç L’ç L’ïijŇæŐěåŔčæŰĞæąč

• åÿőåŁl’NebulasåijĂåŔŚåŔŕäžd’äžŠæŰĞæąčïijŇæŐěåŔčæŰĞæąč

Research

• åÿőåŁl’äijŸåŇŰNebulas RankçőŮæşŢïijŇæŻt’åd’ŽèŕęæČĚ

• åÿőåŁl’NebulasåĹl’çŤĺå¡ćåijŔåŇŰèŕĄæŸŐçŽĎæŰźåijŔèŕĄæŸŐåĚśèŕĘçőŮæşŢPoDçŽĎåőL’åĚĺæĂğïijŇæŻt’åd’ŽèŕęæČĚ

Wiki

• åÿőåŁl’NebulasæŁŁwikiç£żèŕŚæĹŘä¡ăçŽĎæŕ èŕ ïijŇèől’æŻt’åd’ŽäžžäžĘèğčåŇžåİŮéŞ¿ïijŇäžĘèğčNebulas

• åÿőåŁl’NebulasåĹűä¡IJçğŚæŹőæŢŹçĺŃïijŇåÿőåŁl’æŻt’åd’ŽæšąæIJL’çijŰçĺŃèČŇæŹŕçŽĎäžžçŘĘèğčåźűä¡£çŤĺNebulas

Explorer

• åÿőåŁl’NebulasåőŇåŰĎåŇžåİŮæţŔèğĹåŹĺïijŇæŻt’åd’ŽèŕęæČĚ

Wallet

• åÿőåŁl’NebulasåőŇåŰĎç¡ŚéąţçL’ĹéŠśåŇĚïijŇæŻt’åd’ŽèŕęæČĚ

• åÿőåŁl’NebulasåőŇåŰĎæąŇéİćçL’ĹéŠśåŇĚïijŇæŻt’åd’ŽèŕęæČĚ

Crash Reporter in Nebulas

In this doc, we introduce the crash reporter in Nebulas, which is used to collect crash re-
ports in Nebulas and send it back to Nebulas Team, so the whole community can help improving
the quality of Nebulas.

Overview

We, the Nebulas Team and the Nebulas community, always try our best to ensure the
stability of Nebulas, since people put their faith and properties on it. That means critical bugs
are unacceptable, and we are aware of that. However, we can‘t blindly think Nebulas is stable
enough or there won‘t be any bugs. Thus, we have plan B, the crash reporter, to collect crash
report and send it back to Nebulas community. We hope the whole community can leverage the
crash reports and keep improving Nebulas.

Using crash reporter is a very common practice. For example, Microsoft Windows in-
cludes a crash reporting service called Windows Error Reporting that prompts users to send

2.4. Get Involved 88

https://github.com/nebulasio/wiki/blob/master/rpc.md
https://github.com/nebulasio/wiki/blob/master/rpc.md
https://github.com/nebulasio/research/tree/master/nr
https://github.com/nebulasio/research/tree/master/pod
https://github.com/nebulasio/wiki
https://github.com/nebulasio/wiki
https://github.com/nebulasio/explorer
https://github.com/nebulasio/web-wallet
https://github.com/nebulasio/desk-wallet

nebulas Documentation, ìűIJìŃIJ 1.0

crash reports to Microsoft for online analysis. The information goes to a central database run
by Microsoft. Apple also involves a standard crash reporter in macOS, named Crash Reporter.
The Crash Reporter can send the crash logs to Apple Inc, for their engineers to review. Open-
source community also have their own crash reporter, like Bug Buddy for Gnome, Crashpad
for Chrome, Talkback for Mozilla, and etc.

In Nebulas, the crash reporter just works like the other crash reporters. It‘s aware of the
crash, collects necessary information about the crash, and sends it back the Nebulas server. The
server is hosted by Nebulas, and accessible for the whole community.

As a opensource, decentralized platform, we are aware of that the crash reporter may
violate some users‘ privacy concern. Thus, we remove all private information in the crash
report, like the user name, user id, user‘s home path and IP address. Furthermore, the crash
reporter is optional and users may choose close it if users still have some concerns.

How to use it

To enable or disable the crash reporter, you need to look into the configuration file,
config.conf, and change enable_crash_reporter to true to enable it, while
false to disable it.

How it works

In this section, we would like to share some tech details. If you are not interested in the
details, you can ignore this section.

The crash reporter is actually a daemon process, which is started by neb. When starting
the crash reporter, neb will tell it the process id (pid) of neb process, and the crash file path.
For the crash reporter, it will periodically check if the neb process and the crash file exists.
At the time it finds the crash file, it will eliminate the private information and send it back to
Nebulas.

Currently, the crash report is generated by the stderr output from neb. We‘d like the
work with the whole community to collect detailed information in the future.

Infrastructure

Network Protocol

For the network protocol, there were a lot of existing solutions. However, the Nebulas
Team decided to define their own wire protocol, and ensure the use of the following principles
to design it:

• the protocol should be simple and straight.

• the messages can be verified before receiving all the packets, and fail early.

• the protocol should be debugging friendly, so that the developer can easily understand
the raw message.

2.4. Get Involved 89

nebulas Documentation, ìűIJìŃIJ 1.0

Protocol

In Nebulas, we define our own wire protocol as follows:

0 1 2 3
→˓(bytes)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Magic Number |
+---+
| Chain ID |
+---+---------------+
| Reserved | Version |
+---+---------------+
| |
+ +
| Message Name |
+ +
| |
+---+
| Data Length |
+---+
| Data Checksum |
+---+
| Header Checksum |
|---+
| |
+ Data +
. .
. .
| |
+---+

• Magic Number: 32 bits (4 chars)

– The protocol‘s magic number, a numerical constant or text value used to identify
the protocol.

– Default: 0x4e, 0x45, 0x42, 0x31

• Chain ID: 32 bits

– The Chain ID is used to distinguish the test network from the main network.

• Reserved: 24 bits

– reserved field.

– The first bit indicates whether the network message is compressed.

– compressed: {0x80, 0x0, 0x0}; uncompressed: {0x0, 0x0, 0x0}

• Version: 8 bits

– The version of the Message Name.

2.4. Get Involved 90

nebulas Documentation, ìűIJìŃIJ 1.0

• Message Name: 96 bits (12 chars)

– The identification or the name of the Message.

• Data Length: 32 bits

– The total length of the Data.

• Data Checksum: 32 bits

– The CRC32 checksum of the Data.

• Header Checksum: 32 bits

– The CRC32 checksum of the fields from Magic Number to Data Checksum, totally
256 bits.

• Data: variable length, max 512M.

– The message data.

We always use Big-Endian on the message protocol.

Handshaking Messages

• Hello

the handshaking message when a peer connects to another.

version: 0x1

data: struct {
string node_id // the node id, generated by underlying libp2p.
string client_version // the client version, x.y.z schema, eg.

→˓0.1.0.
}

• OK

the response message for handshaking.

version: 0x1

data: struct {
string node_id // the node id, generated by underlying libp2p.
string node_version // the client version, x.y.z schema, eg. 0.

→˓1.0.
}

• Bye

the message to close the connection.

version: 0x1
data: struct {

2.4. Get Involved 91

nebulas Documentation, ìűIJìŃIJ 1.0

string reason
}

Networking Messages

• NetSyncRoutes

request peers to sync route tables.

version: 0x1

• NetRoutes

contains the local route tables.

version: 0x1
data: struct {

PeerID[] peer_ids // router tables.
}

struct PeerID {
string node_id // the node id.

}

Nebulas Messages

TBD.

Crypto Design Doc

Similar to Bitcoin and Ethereum, Nebulas also adopted an elliptic curve algorithm as its
basic encryption algorithm for Nebulas transactions. Users’ private keys will be encrypted with
their passphrases and stored in a keystore.

Hash

Supports generic hash functions, like sha256, sha3256 and ripemd160 etc.

Keystore

The Nebulas Keystore is designed to manage userâĂŹs keys.

2.4. Get Involved 92

nebulas Documentation, ìűIJìŃIJ 1.0

Key

The Key interface is designed to support various keys, including symmetric keys and
asymmetric keys.

Provider

The Keystore provides different methods to save keys, such as memory_provider and per-
sistence_provider. Before storage, the key has been encrypted in the keystore.

• memory provider: This type of provider keeps the keys in memory. After the key
has been encrypted with the passphrase when user setkey or load, it is cached in memory
provider.

• persistence provider: This type of provider serializes the encrypted key to the
file. The file is compatible with EthereumâĂŹs keystore file. Users can back up the
address with its privatekey in it.

Signature

The Signature interface is used to provide applications with the functionality of a digital
signature algorithm. A Signature object can be used to generate and verify digital signatures.

There are two phases, in order to use a Signature object for signing data :

• Initialization: with a private key, which initializes the signature for signing (see initSign()
in the source code of go-nebulas).

• Signing of all input bytes.

A Signature object can recover the public key with a signature and the plain text that was
signed (see function RecoverSignerFromSignature in go-nebulas). So just comparing the from
address and the address derived from the public key can verify a transaction

Similar to the Android Keystore, TPM, TEE and hardware low level security pro-
tection will be supported as a provider later.

NVM - Nebulas Virtual Machine

NVM is one of the most important components in Nebulas. As the name implies, it pro-
vides managed virtual machine execution environments for Smart Contract and Protocol Code.

go-nebulas now support two kinds of Virtual Machines:

• V8: Chrome V8

• LLVM: Low-Level Virtual Machine

2.4. Get Involved 93

https://developer.android.com/training/articles/keystore.html
https://github.com/nebulasio/go-nebulas
https://developers.google.com/v8/
https://llvm.org

nebulas Documentation, ìűIJìŃIJ 1.0

Nebulas V8 Engine

In go-nebulas, we designed and implemented the Nebulas V8 Engine based on Chrome
V8.

The Nebulas V8 Engine provides a high performance sandbox for Smart Contract exe-
cution. It guarantees user deployed code is running in a managed environment, and prevents
massive resource consumption on hosts. Owing to the use of Chrome V8, JavaScript and Type-
Script are first-class languages for Nebulas Smart Contracts. Anyone familiar with JavaScript
or TypeScript can write their own Smart Contract and run it in Nebulas V8.

The following content is an example of Smart Contract written in JavaScript:

"use strict";

var BankVaultContract = function() {
LocalContractStorage.defineMapProperty(this, "bankVault");

};

// save value to contract, only after height of block, users can
→˓takeout
BankVaultContract.prototype = {

init:function() {},
save:function(height) {

var deposit = this.bankVault.get(Blockchain.transaction.
→˓from);

var value = new BigNumber(Blockchain.transaction.value);
if (deposit != null && deposit.balance.length > 0) {

var balance = new BigNumber(deposit.balance);
value = value.plus(balance);

}
var content = {

balance:value.toString(),
height:Blockchain.block.height + height

};
this.bankVault.put(Blockchain.transaction.from, content);

},
takeout:function(amount) {

var deposit = this.bankVault.get(Blockchain.transaction.
→˓from);

if (deposit == null) {
return 0;

}
if (Blockchain.block.height < deposit.height) {

return 0;
}
var balance = new BigNumber(deposit.balance);
var value = new BigNumber(amount);
if (balance.lessThan(value)) {

return 0;
}

2.4. Get Involved 94

https://github.com/nebulasio/wiki/blob/master/nebulas_v8
https://github.com/nebulasio/wiki/blob/master/smart_contract
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/TypeScript
https://en.wikipedia.org/wiki/TypeScript
https://github.com/nebulasio/wiki/blob/master/smart_contract

nebulas Documentation, ìűIJìŃIJ 1.0

var result = Blockchain.transfer(Blockchain.transaction.
→˓from, value);

if (result > 0) {
deposit.balance = balance.dividedBy(value).toString();
this.bankVault.put(Blockchain.transaction.from,

→˓deposit);
}
return result;

}
};

module.exports = BankVaultContract;

For more information about smart contracts in Nebulas, please go to Smart Contract.

For more information about the design of the Nebulas V8 Engine, please go to Nebulas
V8 Engine.

LLVM

TBD.

Nebulas V8 Engine

Nebulas V8 Engine is

LLVM Engine

TBD.

permission_control_in_smart_contract

What Is Permission Control Of Smart Contract

The permission control of a smart contract refers to whether the contract caller has per-
mission to invoke a given function in the contract. There are two types of permission control:
owner permission control, and other permission control.

Owner permissions control: Only the creator of the contract can call this method, other
callers can not call the method.

Other permission control: The contract method can be invoked if the contract developer
defines a conditional caller according to the contract logic. Otherwise, it cannot be invoked.

2.4. Get Involved 95

https://github.com/nebulasio/wiki/blob/master/smart_contract
https://github.com/nebulasio/wiki/blob/master/nebulas_v8
https://github.com/nebulasio/wiki/blob/master/nebulas_v8

nebulas Documentation, ìűIJìŃIJ 1.0

Owner Permission Control

If you want to specify an owner for a small contract and wish that some functions could
only be called by the owner and no one else, you can use following lines of code in your smart
contract.

"use strict";
var onlyOwnerContract = function () {

LocalContractStorage.defineProperty(this, "owner");
};
onlyOwnerContract.prototype = {

init: function() {
this.owner=Blockchain.transaction.from;

},
onlyOwnerFunction: function(){

if(this.owner==Blockchain.transaction.from){
//your smart contract code
return true;

}else{
return false;

}
}

};
module.exports = BankVaultContract;

Explanation:

The function init is only called once when the contract is deployed, so it is there that you
can specify the owner of the contract.The onlyOwnerFunctiuon ensures that the function is
called by the owner of contract.

Other Permission Control

In your smart contract, if you needed to specify other permission control, for example, if
you needed to verify its transaction value, you could write it the following way.

'use strict';
var Mixin = function () {};
Mixin.UNPAYABLE = function () {

if (Blockchain.transaction.value.lt(0)) {
return true;

}
return false;

};
Mixin.PAYABLE = function () {

if (Blockchain.transaction.value.gt(0)) {
return true;

}
return false;

};

2.4. Get Involved 96

nebulas Documentation, ìűIJìŃIJ 1.0

Mixin.POSITIVE = function () {
console.log("POSITIVE");
return true;

};
Mixin.UNPOSITIVE = function () {

console.log("UNPOSITIVE");
return false;

};
Mixin.decorator = function () {

var funcs = arguments;
if (funcs.length < 1) {

throw new Error("mixin decorator need parameters");
}
return function () {

for (var i = 0; i < funcs.length - 1; i ++) {
var func = funcs[i];
if (typeof func !== "function" || !func()) {

throw new Error("mixin decorator failure");
}

}
var exeFunc = funcs[funcs.length - 1];
if (typeof exeFunc === "function") {

exeFunc.apply(this, arguments);
} else {

throw new Error("mixin decorator need an executable
→˓method");

}
};

};
var SampleContract = function () {
};
SampleContract.prototype = {

init: function () {
},
unpayable: function () {

console.log("contract function unpayable:", arguments);
},
payable: Mixin.decorator(Mixin.PAYABLE, function () {

console.log("contract function payable:",arguments);
}),
contract1: Mixin.decorator(Mixin.POSITIVE, function (arg) {

console.log("contract1 function:", arg);
}),
contract2: Mixin.decorator(Mixin.UNPOSITIVE, function (arg) {

console.log("contract2 function:", arg);
}),
contract3: Mixin.decorator(Mixin.PAYABLE, Mixin.POSITIVE,

→˓function (arg) {
console.log("contract3 function:", arg);

}),

2.4. Get Involved 97

nebulas Documentation, ìűIJìŃIJ 1.0

contract4: Mixin.decorator(Mixin.PAYABLE, Mixin.UNPOSITIVE,
→˓function (arg) {

console.log("contract4 function:", arg);
})

};
module.exports = SampleContract;

Explanation:

Mixin.UNPAYABLE,Mixin.PAYABLE,Mixin.POSITIVE ,Mixin.UNPOSITIVE are per-
mission control functionãĂĆThe permission control function is as follows:

• Mixin.UNPAYABLE: check the transaction sent value, if value is less than 0 return true,
otherwise return false

• Mixin.PAYABLE : check the transaction sent value, if value is greater than 0 return true,
otherwise return false

• Mixin.UNPOSITIVE ïijŽoutput log UNPOSITIVE

• Mixin.POSITIVE ïijŽoutput log POSITIVE

Implement permission control in Mixin.decoratorïijŽ

• check arguments: if (funcs.length < 1)

• invoke permission control function: if (typeof func !== “function“ || !func())

• if permission control function success ,invoke other function: var exeFunc =
funcs[funcs.length - 1]

Permission control tests in smart contracts are as follows:

• The permission control function of the contract1 is Mixin.POSITIVE. If the permission
check passes, the output is printed, otherwise an error is thrown by the permission check
function.

contract1: Mixin.decorator(Mixin.POSITIVE, function (arg)
→˓{

console.log("contract1 function:", arg);
})

• The permission control function of the contract2 is Mixin.UNPOSITIVE. If the permis-
sion check passes, the output is printed, otherwise an error is thrown by the permission
check function.

contract2: Mixin.decorator(Mixin.UNPOSITIVE, function
→˓(arg) {

console.log("contract2 function:", arg);
})

• The permission control function of the contract3 is Mixin.PAYABLE, Mixin.POSITIVE.
If the permission check passes, the output is printed, otherwise an error is thrown by the
permission check function.

2.4. Get Involved 98

nebulas Documentation, ìűIJìŃIJ 1.0

contract3: Mixin.decorator(Mixin.PAYABLE, Mixin.POSITIVE,
→˓function (arg) {

console.log("contract3 function:", arg);
})

• The permission control function of the contract4 is Mixin.PAYABLE,
Mixin.UNPOSITIVE. If the permission check passes, the output is printed, other-
wise an error is thrown by the permission check function.

contract4: Mixin.decorator(Mixin.PAYABLE, Mixin.
→˓UNPOSITIVE, function (arg) {

console.log("contract4 function:", arg);
})

Tips:

With reference to the above example, the developer needs only three steps in order to
implement other permission controls:

• Implement permission control functions.

• Implement the decorator function, and the permission check is completed by the condi-
tional statement if (typeof func !== “function“ || !func()).

• Refer to the contract1 function to implement other permission control.

NBRE Design Doc

NBRE (Nebulas Runtiome Environment) is the Nebulas chain execution environment. Its
framework is shown as follows.

NBRE contains two main processes, which provide the methods how to update algorithms
and how to execute algorithms.

The updating process provides how to upload algorithms and core protocols. It includes
the following steps:

2.4. Get Involved 99

nebulas Documentation, ìűIJìŃIJ 1.0

1. The algorithms are implemented with the languages supported by LLVM. Then, their
codes are handled by the NASIR tool, which are translated to bitcode.

2. The bitcode streams are coded with base64, which are translated to payload of transaction
data. The transaction data is uploaded to the online chain.

3. After that, the transaction data will be packed and varified. Then, the related bitcode will
stored into the RocksDB.

The execution process exhibits the processes from request to results. The corresponding
details are as follows.

1. User appries for algorithm call requests with the forms of RPC or RESful API.

2. After receiving the request, the core NEB forward it to NBRE.

3. NBRE starts JIT and loads the algorithm code into JIT.

4. The JIT executes the algorithm with specified parameters and the invoking method, and
returns the execution result.

5. NBRE returns the execution result to NEB through IPC.

6. NEB returns the result to the user.

IPC

IPC is the messenger for NEB and NBRE interaction.

Features

IPC adopts shared memoty to communicate between NEB and NBRE to improve perfor-
mance. There are two sub-threads, a server and a client, inside IPC. The server listens for
the NEB request, and the client listens for the NBRE result. Also, there is communication
interaction between the two threads.

Framework

The framework of IPC is shown as below.

2.4. Get Involved 100

nebulas Documentation, ìűIJìŃIJ 1.0

1. NEB calls a function, and the server receives the request and sends it to the client.

2. The client sends the request to NBRE.

3. NBRE runs the corresponding program and returns the result to the client, the client sends
the result to the server.

4. The server returns the result to the NEB.

JIT

JIT is a concurrent virtual machine based on LLVM, which runs ir programs providing
algorithms and interfaces for NBRE. It is the key of the dynamic update for NBRE.

Features

Dynamic update

The dynamic update in NBRE contains two respects: - NBRE’s own dynamic update -
NBRE’s new feature interfaces

NBRE’s updates are performed by adding algorithms and interface programs to the
database. When a new function is updated or called, the corresponding program will be loaded
into the JIT in the database.

Concurrent virtual machine

To improve performace, JIT is implemented based on a concurrent virtual machine mech-
anism. When one interface is called, the JIT first queries whether the corresponding program
has been loaded. If the programs is loaded, sets its execution count to be 1800; otherwise, loads
the program from database and sets its execution count to be 1801. Then runs the correspond-
ing progrm. At regular intervals, the JIT decrements the corresponding count of each loaded
function by one and releases the program with a count when its count less than zero.

2.4. Get Involved 101

nebulas Documentation, ìűIJìŃIJ 1.0

Framework

The JIT framework is shown as below.

1. One interface is requested from outside.

2. JIT queries the corresponding function program from the database.

3. JIT loads the corresponding program.

4. Runs the program.

5. Returns the result.

2.4.6 Roadmap

Please visit our new Roadmap here.

Milestones

• In 2017 December, Nebulas test-net will be online.

• In 2018 Q1, Nebulas v1.0 will be released and main-net will be online (ahead of the
original schedules).

2.4. Get Involved 102

https://nebulas.io/roadmap.html

nebulas Documentation, ìűIJìŃIJ 1.0

v1.0 (2018 Q1)

• Fully functional blockchain, with JavaScript and TypeScript as the languages of Smart
Contract.

• A user-friendly Nebulas Wallet for both desktop and mobile device to manage their own
assets on Nebulas.

• A web-based Nebulas Block Explorer to let developers and users search and view all the
data on Nebulas.

v2.0 (2018 Q4)

• Add Nebulas Rank (NR) to each addresses on Nebulas, help users and developers finding
more values inside.

• Implement Developer Incentive Protocol (DIP) to encourage developers build more valu-
able decentralized applications on Nebulas.

v3.0 (2019 Q4)

• Fully functional Nebulas Force and PoD implementation.

Long term goals

• Scalability for large transaction volume.

• Subchain support.

• Zero-knowledge Proof integration.

Versions

v0.1.0 [done]

Goals

• Implement a nebulas kernel.

• In-memory blockchain with PoW consensus.

• Fully P2P network support.

Download here.

2.4. Get Involved 103

https://github.com/nebulasio/go-nebulas/releases/tag/v0.1.0

nebulas Documentation, ìűIJìŃIJ 1.0

v0.2.0 [done]

Goals

• Provide (RPC) API to submit/query transaction externally.

• Implement Sync Protocol to bootstrap any nodes that join into nebulas network at any
time, from any tail.

Core

• Implement transaction pool.

• Prevent record-replay attack of transaction.

• Integrate Protocol Buffer for serialization.

Net

• Refactor the design of network.

• Implement Sync Protocol.

• Implement Broadcast and Relay function.

API

• Add Balance API.

• Add Transaction API.

• Add some debugging API, eg âĂIJDump ChainâĂİ, âĂIJDump BlockâĂİ.

Crypto

• Support Ethereum-keystore file.

• Support multi key files management in KeyStore.

Download here.

v0.3.0 [done]

Goals

• Support disk storage for all blockchain data.

• Add smart contract execution engine, based on Chrome V8.

Core

• Add disk storage with a middleware of storage.

• Implement smart contract transaction.

NVM

• Integrate Chrome V8 as Smart Contract execution engine.

Download here.

2.4. Get Involved 104

https://github.com/nebulasio/go-nebulas/releases/tag/v0.2.0
https://github.com/nebulasio/go-nebulas/releases/tag/v0.3.0

nebulas Documentation, ìűIJìŃIJ 1.0

v0.4.0 [done]

Goals

• Implement Gas calculating in Smart Contract Execution Engine.

• Support more API.

• Add repl in neb application.

• Add metrics and reporting capability.

Core

• Add Gas related fields in Transaction.

• Implemented Gas calculation mechanism.

NVM

• Add execution limits to V8 Engine.

• Add Gas calculation mechanism.

CMD

• Add repl in neb application

Misc

• Add more API.

• Add metrics and reporting capability.

Download here.

v0.5.0 [done]

Goals

• Prepare for test-net releasing, improve stability.

Core

• Improve stability and missing functions if we miss anything.

Consensus

• Implement DPoS consensus algorithm and keep developing PoD algorithm.

NVM

• Finalize the Gas Cost Matrix.

• Support Event liked pubsub functionality.

Misc

• Add more metrics to monitor the stability of neb applications.

2.4. Get Involved 105

https://github.com/nebulasio/go-nebulas/releases/tag/v0.4.0

nebulas Documentation, ìűIJìŃIJ 1.0

Download here.

v0.6.0 [done]

Goals

• Stability improvement, performance optimization.

• Reconstruct P2P network.

• Redesign block sync logic.

Testnet

• Fix bugs & improv the performance.

Network

• Add Stream for single connection management.

• Add StreamManager for connections management.

• Implement priority message chan.

• Add route table persistence strategy.

• Improve strategy to process TCP packet splicing.

Log

• Add console log(CLog), printing log to both console & log files, to inform developers
whatâĂŹs happening in Neb.

• Add verbose log(VLog), printing log to log files, to inform devs how Neb works in
details.

• Log adjustment.

Sync

• Use chunk header hash to boost the sync performance.

• Adjust the synchronous retry logic and timeout configuration.

• Fix bugs in synchronization and add more metrics statistics.

Download here.

v0.6.1 [done]

Goals

• Improve test net compatibility.

Core

• Upgrade the storage structure of the block

2.4. Get Involved 106

https://github.com/nebulasio/go-nebulas/releases/tag/v0.5.0
https://github.com/nebulasio/go-nebulas/releases/tag/v0.6.0

nebulas Documentation, ìűIJìŃIJ 1.0

Download here.

v0.8.0 [done]

Goals

• New Nebulas Block Explorer.

• New Nebulas Wallet.

• New web-based Playground tools to interactive with Nebulas.

v1.0.0 [done]

Goals

• Ready for main-net.

• Support JavaScript and TypeScript as Smart Contract Language.

• Stable and high performance blockchain system.

• Release new Nebulas Block Explorer.

• Release new Nebulas Wallet for both desktop and mobile device.

• A web-based playground tools for developer.

Download explorer.

Download wallet.

Download neb.js.

2.4.7 DApp Development

Smart Contract

Languages

In Nebulas, there are two supported languages for writing smart contracts:

• JavaScript

• TypeScript

They are supported by the integration of Chrome V8, a widely used JavaScript engine
developed by The Chromium Project for Google Chrome and Chromium web browsers.

2.4. Get Involved 107

https://github.com/nebulasio/go-nebulas/releases/tag/v0.6.1
https://github.com/nebulasio/explorer/releases/tag/explorer-tag-1.0.0
https://github.com/nebulasio/web-wallet
https://github.com/nebulasio/neb.js
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/TypeScript
https://developers.google.com/v8/

nebulas Documentation, ìűIJìŃIJ 1.0

Execution Model

The diagram below is the Execution Model of the Smart Contract:

Smart
Contract Execution Model

1. The whole src of the Smart Contract and its arguments are packaged in the Transaction
and deployed on Nebulas.

2. The execution of Smart Contract is divided in two phases:

(a) Preprocess: inject tracing instruction, etc.

(b) Execute: generate executable src and execute it.

2.4. Get Involved 108

nebulas Documentation, ìűIJìŃIJ 1.0

Contracts

Contracts in Nebulas are similar to classes in object-oriented languages. They contain
persistent data in state variables and functions that can modify these variables.

Writing Contract

A contract must be a Prototype Object or Class in JavaScript or TypeScript.

A Contract must include an init function, it will be executed only once when deploying.
Functions whose names start with _ are private and can‘t be executed in a Transaction. The
others are all public and can be executed in a Transaction.

Since the Contract is executed on Chrome V8, all instance variables are in mem-
ory, it‘s not wise to save all of them to state trie in Nebulas. In Nebulas, we provide
LocalContractStorage and GlobalContractStorage objects to help develop-
ers define fields needing to be saved to state trie. And those fields should be defined in
constructor of the Contract, before other functions.

The following is a sample contract:

class Rectangle {
constructor() {

// define fields stored to state trie.
LocalContractStorage.defineProperties(this, {

height: null,
width: null,

});
}

// init function.
init(height, width) {

this.height = height;
this.width = width;

}

// calc area function.
calcArea() {

return this.height * this.width;
}

// verify function.
verify(expected) {

let area = this.calcArea();
if (expected != area) {

throw new Error("Error: expected " + expected + ",
→˓actual is " + area + ".");

}
}

}

2.4. Get Involved 109

https://github.com/nebulasio/wiki/blob/master/merkle_trie

nebulas Documentation, ìűIJìŃIJ 1.0

Visibility

In JavaScript, there is no function visibility, all functions defined in prototype object are
public.

In Nebulas, we define two kinds of visibility public and private:

• public All functions whose name matches the regexp
^[a-zA-Z$][A-Za-z0-9_$]*$ are public, except init. Public functions
can be called via Transaction.

• private All functions whose name starts with _ are private. A private function can
only be called by public functions.

Global Objects

console

The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.

The global console can be used without calling require('console').

console.info([...args])

• ...args <any>

The console.info() function is an alias for console.log().

console.log([...args])

• ...args <any>

Print args to Nebulas Logger at level info.

console.debug([...args])

• ...args <any>

Print args to Nebulas Logger at level debug.

console.warn([...args])

• ...args <any>

Print args to Nebulas Logger at level warn.

2.4. Get Involved 110

nebulas Documentation, ìűIJìŃIJ 1.0

console.error([...args])

• ...args <any>

Print args to Nebulas Logger at level error.

LocalContractStorage

The LocalContractStorage module provides a state trie based storage capability. It
accepts string only key value pairs. And all data is stored to a private state trie associated with
the current contract address. Only the contract can access it.

interface Descriptor {
// serialize value to string;
stringify?(value: any): string;

// deserialize value from string;
parse?(value: string): any;

}

interface DescriptorMap {
[fieldName: string]: Descriptor;

}

interface ContractStorage {
// get and return value by key from Native Storage.
rawGet(key: string): string;
// set key and value pair to Native Storage,
// return 0 for success, otherwise failure.
rawSet(key: string, value: string): number;

// define a object property named `fieldname` to `obj` with
→˓descriptor.

// default descriptor is JSON.parse/JSON.stringify descriptor.
// return this.
defineProperty(obj: any, fieldName: string, descriptor?:

→˓Descriptor): any;

// define object properties to `obj` from `props`.
// default descriptor is JSON.parse/JSON.stringify descriptor.
// return this.
defineProperties(obj: any, props: DescriptorMap): any;

// define a StorageMap property named `fieldname` to `obj` with
→˓descriptor.

// default descriptor is JSON.parse/JSON.stringify descriptor.
// return this.
defineMapProperty(obj: any, fieldName: string, descriptor?:

→˓Descriptor): any;

2.4. Get Involved 111

nebulas Documentation, ìűIJìŃIJ 1.0

// define StorageMap properties to `obj` from `props`.
// default descriptor is JSON.parse/JSON.stringify descriptor.
// return this.
defineMapProperties(obj: any, props: DescriptorMap): any;

// delete key from Native Storage.
// return 0 for success, otherwise failure.
del(key: string): number;

// get value by key from Native Storage,
// deserialize value by calling `descriptor.parse` and return.
get(key: string): any;

// set key and value pair to Native Storage,
// the value will be serialized to string by calling

→˓`descriptor.stringify`.
// return 0 for success, otherwise failure.
set(key: string, value: any): number;

}

interface StorageMap {
// delete key from Native Storage, return 0 for success,

→˓otherwise failure.
del(key: string): number;

// get value by key from Native Storage,
// deserialize value by calling `descriptor.parse` and return.
get(key: string): any;

// set key and value pair to Native Storage,
// the value will be serialized to string by calling

→˓`descriptor.stringify`.
// return 0 for success, otherwise failure.
set(key: string, value: any): number;

}

BigNumber

The BigNumber module uses the bignumber.js, a JavaScript library for arbitrary-
precision decimal and non-decimal arithmetic operations. The contract can use BigNumber
directly to handle the value of the transaction and other value transfers.

var value = new BigNumber(0);
value.plus(1);
...

2.4. Get Involved 112

https://github.com/MikeMcl/bignumber.js

nebulas Documentation, ìűIJìŃIJ 1.0

Blockchain

The Blockchain module provides an object for contracts to obtain transactions and
blocks executed by the current contract. Also, the NAS can be transferred from the contract
and the address check is provided.

Blockchain API:

// current block
Blockchain.block;

// current transaction, transaction's value/gasPrice/gasLimit auto
→˓change to BigNumber object
Blockchain.transaction;

// transfer NAS from contract to address
Blockchain.transfer(address, value);

// verify address
Blockchain.verifyAddress(address);

properties:

• block: current block for contract execution

– timestamp: block timestamp

– seed: random seed

– height: block height

• transaction: current transaction for contract execution

– hash: transaction hash

– from: sender address of the transaction

– to: recipient address of the transaction

– value: transaction value, a BigNumber object for contract use

– nonce: transaction nonce

– timestamp: transaction timestamp

– gasPrice: transaction gasPrice, a BigNumber object for contract use

– gasLimit: transaction gasLimit, a BigNumber object for contract use

• transfer(address, value): transfer NAS from contract to address

– params:

* address: nebulas address to receive NAS

* value: transfer value, a BigNumber object

– return:

2.4. Get Involved 113

nebulas Documentation, ìűIJìŃIJ 1.0

* 0: transfer success

* 1: transfer failed

• verifyAddress(address): verify address

– params:

* address: address need to check

– return:

* 1: address is valid

* 0: address is invalid

Example to use:

'use strict';

var SampleContract = function () {
LocalContractStorage.defineProperties(this, {

name: null,
count: null

});
LocalContractStorage.defineMapProperty(this, "allocation");

};

SampleContract.prototype = {
init: function (name, count, allocation) {

this.name = name;
this.count = count;
allocation.forEach(function (item) {

this.allocation.put(item.name, item.count);
}, this);
console.log('init: Blockchain.block.coinbase = ' +

→˓Blockchain.block.coinbase);
console.log('init: Blockchain.block.hash = ' + Blockchain.

→˓block.hash);
console.log('init: Blockchain.block.height = ' + Blockchain.

→˓block.height);
console.log('init: Blockchain.transaction.from = ' +

→˓Blockchain.transaction.from);
console.log('init: Blockchain.transaction.to = ' +

→˓Blockchain.transaction.to);
console.log('init: Blockchain.transaction.value = ' +

→˓Blockchain.transaction.value);
console.log('init: Blockchain.transaction.nonce = ' +

→˓Blockchain.transaction.nonce);
console.log('init: Blockchain.transaction.hash = ' +

→˓Blockchain.transaction.hash);
},
transfer: function (address, value) {

var result = Blockchain.transfer(address, value);

2.4. Get Involved 114

nebulas Documentation, ìűIJìŃIJ 1.0

console.log("transfer result:", result);
Event.Trigger("transfer", {

Transfer: {
from: Blockchain.transaction.to,
to: address,
value: value

}
});

},
verifyAddress: function (address) {

var result = Blockchain.verifyAddress(address);
console.log("verifyAddress result:", result);

}
};

module.exports = SampleContract;

Event

The Event module records execution events in the contract. The recorded events are
stored in the event trie on the chain, which can be fetched by FetchEvents method in block
with the execution transaction hash. All contract event topics have a chain.contract.
prefix before the topic they set in contract.

Event.Trigger(topic, obj);

• topic: user-defined topic

• obj: JSON object

You can see the example in SampleContract above.

Math.random

• Math.random() returns a floating-point, pseudo-random number in the range from 0
inclusive, up to, but not including 1. The typical usage is:

"use strict";

var BankVaultContract = function () {};

BankVaultContract.prototype = {

init: function () {},

game: function(subscript){

var arr =[1,2,3,4,5,6,7,8,9,10,11,12,13];

2.4. Get Involved 115

nebulas Documentation, ìűIJìŃIJ 1.0

for(var i = 0;i < arr.length; i++){
var rand = parseInt(Math.random()*arr.length);
var t = arr[rand];
arr[rand] =arr[i];
arr[i] = t;

}

return arr[parseInt(subscript)];
},

};
module.exports = BankVaultContract;

• Math.random.seed(myseed) if needed, you can use this method to reset the ran-
dom seed. The argument myseed must be a string.

‘‘‘js

“use strict“;

var BankVaultContract = function () {};

BankVaultContract.prototype = {

init: function () {},

game:function(subscript, myseed){

var arr =[1,2,3,4,5,6,7,8,9,10,11,12,13];

console.log(Math.random());

for(var i = 0;i < arr.length; i++){

if (i == 8) {
// reset random seed with `myseed`
Math.random.seed(myseed);

}

var rand = parseInt(Math.random()*arr.length);
var t = arr[rand];
arr[rand] =arr[i];
arr[i] = t;

}
return arr[parseInt(subscript)];

},

};

module.exports = BankVaultContract;

2.4. Get Involved 116

nebulas Documentation, ìűIJìŃIJ 1.0

Date
```js
"use strict";

var BankVaultContract = function () {};

BankVaultContract.prototype = {
init: function () {},

test: function(){
var d = new Date();
return d.toString();

}
};

module.exports = BankVaultContract;

Tips:

• Unsupported methodsïijŽtoDateString(), toTimeString(),
getTimezoneOffset(), toLocaleXXX().

• new Date()/Date.now() returns the timestamp of current block in milliseconds.

• getXXX returns the result of getUTCXXX.

accept

this method aims to make it possible to send a binary transfer to a contract account. As to
is a smart contact address, which has declared the function accept() and it excuted correctly,
the transfer will succeed. If the Tx is a non-binary Tx, it will be treated as a normal function.

"use strict";
var DepositeContent = function (text) {

if(text){
var o = JSON.parse(text);
this.balance = new BigNumber(o.balance);//ä¡Źéćİä£ąæĄŕ
this.address = o.address;

}else{
this.balance = new BigNumber(0);
this.address = "";

}
};

DepositeContent.prototype = {
toString: function () {

return JSON.stringify(this);
}

};

2.4. Get Involved 117



nebulas Documentation, ìűIJìŃIJ 1.0

var BankVaultContract = function () {
LocalContractStorage.defineMapProperty(this, "bankVault", {

parse: function (text) {
return new DepositeContent(text);

},
stringify: function (o) {

return o.toString();
}

});
};

BankVaultContract.prototype = {
init: function () {},

save: function () {
var from = Blockchain.transaction.from;
var value = Blockchain.transaction.value;
value = new BigNumber(value);
var orig_deposit = this.bankVault.get(from);
if (orig_deposit) {

value = value.plus(orig_deposit.balance);
}

var deposit = new DepositeContent();
deposit.balance = new BigNumber(value);
deposit.address = from;
this.bankVault.put(from, deposit);

},

accept:function(){
this.save();
Event.Trigger("transfer", {

Transfer: {
from: Blockchain.transaction.from,
to: Blockchain.transaction.to,
value: Blockchain.transaction.value,

}
});

}

};
module.exports = BankVaultContract;

NRC20

Abstract

The following standard allows for the implementation of a standard API for tokens within
smart contracts. This standard provides basic functionality to transfer tokens, as well as allows

2.4. Get Involved 118



nebulas Documentation, ìűIJìŃIJ 1.0

tokens to be approved so they can be spent by another on-chain third party.

Motivation

A standard interface allows that a new token can be created by any application easily :
from wallets to decentralized exchanges.

Methods

name

Returns the name of the token - e.g. "MyToken".

// returns string, the name of the token.
function name()

symbol

Returns the symbol of the token. E.g. “TK“.

// returns string, the symbol of the token
function symbol()

decimals

Returns the number of decimals the token uses - e.g. 8, means to divide the token amount
by 100000000 to get its user representation.

// returns number, the number of decimals the token uses
function decimals()

totalSupply

Returns the total token supply.

// returns string, the total token supply, the decimal value is
→˓decimals* total.
function totalSupply()

2.4. Get Involved 119



nebulas Documentation, ìűIJìŃIJ 1.0

balanceOf

Returns the account balance of a address.

// returns string, the account balance of another account with
→˓address
function balanceOf(address)

transfer

Transfers value amount of tokens to address, and MUST fire the Transfer event.
The function SHOULD throw if the from account balance does not have enough tokens to
spend.

Note Transfers of 0 values MUST be treated as normal transfers and fire the Transfer
event.

// returns `true`, if transfer success, else throw error
function transfer(address, value)

transferFrom

Transfers value amount of tokens from address from to address to, and MUST fire the
Transfer event.

The transferFrom method is used for a withdraw workflow, allowing contracts to
transfer tokens on your behalf. This can be used for example to allow a contract to transfer
tokens on your behalf and/or to charge fees in sub-currencies. The function SHOULD throw
unless the from account has deliberately authorized the sender of the message via some mech-
anism.

Note Transfers of 0 values MUST be treated as normal transfers and fire the Transfer
event.

// returns `true`, if transfer success, else throw error
function transferFrom(from, to, value)

approve

Allows spender to withdraw from your account multiple times, up the currentValue
to the value amount. If this function is called again it overwrites the current allowance with
value.

NOTE: To prevent attack vectors, the user needs to give a previous approve value, and the
default value that is not approve is 0.

2.4. Get Involved 120



nebulas Documentation, ìűIJìŃIJ 1.0

// returns `true`, if approve success, else throw error
function approve(spender, currentValue, value)

allowance

Returns the amount which spender is still allowed to withdraw from owner.

// returns string, the value allowed to withdraw from `owner`.
function allowance(owner, spender)

Events

transferEvent

MUST trigger when tokens are transferred, including zero value transfers.

A token contract which creates new tokens SHOULD trigger a Transfer event with the
from address set to totalSupply when tokens are created.

function transferEvent: function(status, from, to, value)

approveEvent

MUST trigger on any call to approve(spender, currentValue, value).

function approveEvent: function(status, from, spender, value)

Implementation

Example implementations are available at

• NRC20.js

'use strict';

var Allowed = function (obj) {
this.allowed = {};
this.parse(obj);

}

Allowed.prototype = {
toString: function () {

return JSON.stringify(this.allowed);

2.4. Get Involved 121

https://github.com/nebulasio/go-nebulas/blob/master/nf/nvm/test/NRC20.js


nebulas Documentation, ìűIJìŃIJ 1.0

},

parse: function (obj) {
if (typeof obj != "undefined") {

var data = JSON.parse(obj);
for (var key in data) {

this.allowed[key] = new BigNumber(data[key]);
}

}
},

get: function (key) {
return this.allowed[key];

},

set: function (key, value) {
this.allowed[key] = new BigNumber(value);

}
}

var StandardToken = function () {
LocalContractStorage.defineProperties(this, {

_name: null,
_symbol: null,
_decimals: null,
_totalSupply: {

parse: function (value) {
return new BigNumber(value);

},
stringify: function (o) {

return o.toString(10);
}

}
});

LocalContractStorage.defineMapProperties(this, {
"balances": {

parse: function (value) {
return new BigNumber(value);

},
stringify: function (o) {

return o.toString(10);
}

},
"allowed": {

parse: function (value) {
return new Allowed(value);

},
stringify: function (o) {

return o.toString();

2.4. Get Involved 122



nebulas Documentation, ìűIJìŃIJ 1.0

}
}

});
};

StandardToken.prototype = {
init: function (name, symbol, decimals, totalSupply) {

this._name = name;
this._symbol = symbol;
this._decimals = decimals || 0;
this._totalSupply = new BigNumber(totalSupply).mul(new

→˓BigNumber(10).pow(decimals));

var from = Blockchain.transaction.from;
this.balances.set(from, this._totalSupply);
this.transferEvent(true, from, from, this._totalSupply);

},

// Returns the name of the token
name: function () {

return this._name;
},

// Returns the symbol of the token
symbol: function () {

return this._symbol;
},

// Returns the number of decimals the token uses
decimals: function () {

return this._decimals;
},

totalSupply: function () {
return this._totalSupply.toString(10);

},

balanceOf: function (owner) {
var balance = this.balances.get(owner);

if (balance instanceof BigNumber) {
return balance.toString(10);

} else {
return "0";

}
},

transfer: function (to, value) {
value = new BigNumber(value);
if (value.lt(0)) {

2.4. Get Involved 123



nebulas Documentation, ìűIJìŃIJ 1.0

throw new Error("invalid value.");
}

var from = Blockchain.transaction.from;
var balance = this.balances.get(from) || new BigNumber(0);

if (balance.lt(value)) {
throw new Error("transfer failed.");

}

this.balances.set(from, balance.sub(value));
var toBalance = this.balances.get(to) || new BigNumber(0);
this.balances.set(to, toBalance.add(value));

this.transferEvent(true, from, to, value);
},

transferFrom: function (from, to, value) {
var spender = Blockchain.transaction.from;
var balance = this.balances.get(from) || new BigNumber(0);

var allowed = this.allowed.get(from) || new Allowed();
var allowedValue = allowed.get(spender) || new BigNumber(0);
value = new BigNumber(value);

if (value.gte(0) && balance.gte(value) && allowedValue.
→˓gte(value)) {

this.balances.set(from, balance.sub(value));

// update allowed value
allowed.set(spender, allowedValue.sub(value));
this.allowed.set(from, allowed);

var toBalance = this.balances.get(to) || new
→˓BigNumber(0);

this.balances.set(to, toBalance.add(value));

this.transferEvent(true, from, to, value);
} else {

throw new Error("transfer failed.");
}

},

transferEvent: function (status, from, to, value) {
Event.Trigger(this.name(), {

Status: status,
Transfer: {

from: from,
to: to,

2.4. Get Involved 124



nebulas Documentation, ìűIJìŃIJ 1.0

value: value
}

});
},

approve: function (spender, currentValue, value) {
var from = Blockchain.transaction.from;

var oldValue = this.allowance(from, spender);
if (oldValue != currentValue.toString()) {

throw new Error("current approve value mistake.");
}

var balance = new BigNumber(this.balanceOf(from));
var value = new BigNumber(value);

if (value.lt(0) || balance.lt(value)) {
throw new Error("invalid value.");

}

var owned = this.allowed.get(from) || new Allowed();
owned.set(spender, value);

this.allowed.set(from, owned);

this.approveEvent(true, from, spender, value);
},

approveEvent: function (status, from, spender, value) {
Event.Trigger(this.name(), {

Status: status,
Approve: {

owner: from,
spender: spender,
value: value

}
});

},

allowance: function (owner, spender) {
var owned = this.allowed.get(owner);

if (owned instanceof Allowed) {
var spender = owned.get(spender);
if (typeof spender != "undefined") {

return spender.toString(10);
}

}
return "0";

}

2.4. Get Involved 125



nebulas Documentation, ìűIJìŃIJ 1.0

};

module.exports = StandardToken;

Tools

All the development tools: official dev tools and tools from the community. We welcome
you to join us and build the Nebulas ecosystem together. You can recommend more tools and
edit this page on Github directly.

• Cross-platform Nebulas Smart Contract IDE

Full functions: web

Local NVM: Mac OS, Windows, Linux

• nebPay

Nebulas payment JavaScript API. Users can use it in browser on both PC and mobile.
Users can make NAS payments through the Chrome extension and the iOS/Android wallet.

• Development Environment for Nebulas

JavaScript Development Tools

• VS Code

• sublime

DApp Development Framework

• Nasa.js The acclaimed Nebulas DApp client development framework, lightweight and
easy to use.

• Nebulas DApp Local Development Debugging Tool

Contract Development Tools

• Smart Contract Integrated Development Environment

• Nebulas smart contract IDE

Contract Deployment Tools

• Web-wallet

• WebExtensionWallet

2.4. Get Involved 126

https://nebide.block2100.com/
https://github.com/nebulasio/nebPay
https://github.com/mirei83/NebuEnv
https://code.visualstudio.com/
https://www.sublimemerge.com/download
https://github.com/NasaTeam/Nasa.js
https://www.sublimemerge.com/download
https://nebide.block2100.com/
https://github.com/cailuxianggg/nebulas-ide
https://github.com/nebulasio/web-wallet
https://github.com/ChengOrangeJu/WebExtensionWallet


nebulas Documentation, ìűIJìŃIJ 1.0

Nebpay

• JavaScript SDK

• iOS SDK

• Android SDK

Nebulas API

• Go

• Python

• Java

• JavaScript

• PHP

• ruby

• NET

• unity3d

• swift

Static Scanning Tools

• Nebulas Smart Contract Code Checker

• NebulasÂăSmart Contract Lint Tool

• Nebulas javascript/typescript smart contract static check tool

Command Line Tools

• A CLI Tool forÂăNebulas

Testing Tools

• NebTest will automate unit testing ofÂănebulasÂăsmart contracts

Others

NebulasDB is a nebulas-based, decentralized, non-relational database, and provides a JS-
SDK client

2.4. Get Involved 127

https://github.com/nebulasio/nebPay
https://github.com/nebulasio/neb.iOS
https://github.com/nebulasio/neb.android
https://github.com/nebulasio/go-nebulas
https://github.com/nebulasio/neb.py
https://github.com/nebulasio/neb.java
https://github.com/nebulasio/neb.js
https://github.com/nebulasio/neb.php
https://github.com/simlegate/nebulas.rb
https://github.com/johnetran/neb.net
https://github.com/xbhuang1994/nebulas-unity-sdk
https://github.com/ZJJeffery/swiftSDK
https://github.com/NasaTeam/naslint
https://github.com/jnoodle/nebulasLint
https://github.com/zoowii/nebstaticcheck
https://github.com/5sWind/nebCli
https://github.com/Ideas2IT/nebtest


nebulas Documentation, ìűIJìŃIJ 1.0

• The console is easy to use to develop for data operations

• Nebulas-Utils is an utiliy package for Nebulas Chain Development

• Based onÂăNebulasÂăJS API; putsÂănebulas.js and nebpay.js in one package

DApps Design Guide

TBA

You can download PDF here.

Learning Resources

All learning resources. Videos and documents. Welcome to recommend more resources
from the community, and you can edit this page on Github directly. Help others and learn things
together.

Official Nebulas Documents

• Nebulas Mauve Paper: Developer Incentive Protocol: [English], [Chinese]

• About the Nebulas Mauve Paper: Developer Incentive Protocol

• Nebulas Rank Yellow Paper: [English], [Chinese], [Korean], [Portuguese]

• Official Interpretation of the âĂIJNebulas Rank Yellow PaperâĂİ

• Technical Whitepaper: [English], [Chinese]

• Non-technical Whitepaper: [English], [Chinese]

Dive into Nebulas

• Dive into Nebulas 1 - An Introduction

• Dive into Nebulas 2 - A Quick Start

• Dive into Nebulas 3 - Managing Accounts

• Dive into Nebulas 4 - Transactions

How to build a DApp on Nebulas

• How to build a DApp on Nebulas: [Part 1], [Part 2], [Part 3]

• Details on the Smart Contract Ranking Algorithm: [Part 1], [Part 2]

• New Nebulas Smart Contract feature

• Claim Nebulas Testnet Token Step by Step

2.4. Get Involved 128

https://github.com/antgan/nebulasdb-sdk
https://github.com/iHamburg/nebulas-utils
https://github.com/xuelabi123/nebrella
https://nebulas.io/docs/DAppDesignGuidelines.pdf
https://nebulas.io/docs/NebulasMauvepaper.pdf
https://nebulas.io/docs/NebulasMauvepaperZh.pdf
https://medium.com/nebulasio/nebulas-mauve-paper-developer-incentive-protocol-37bb90e52a20
https://nebulas.io/docs/NebulasYellowpaper.pdf
https://nebulas.io/docs/NebulasYellowpaperZh.pdf
https://nebulas.io/docs/NebulasYellowpaperKr.pdf
https://nebulas.io/docs/NebulasYellowpaperPt.pdf
https://medium.com/nebulasio/official-interpretation-of-nebulas-rank-yellow-paper-dd18293cd9a9
https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf
https://nebulas.io/docs/NebulasTechnicalWhitepaperZh.pdf
https://nebulas.io/docs/NebulasWhitepaper.pdf
https://nebulas.io/docs/NebulasWhitepaperZh.pdf
https://medium.com/nebulasio/dive-into-nebulas-1-introduction-3ec8bc73571c
https://medium.com/nebulasio/dive-into-nebulas-2-quick-start-105da9df80e1
https://medium.com/nebulasio/dive-into-nebulas-3-accounts-3ebd208858d6
https://medium.com/nebulasio/dive-into-nebulas-4-transactions-2a13845e1d03
https://medium.com/nebulasio/how-to-build-a-dapp-on-nebulas-part-1-da4eaf9399bc
https://medium.com/nebulasio/how-to-build-a-dapp-on-nebulas-part-2-5424789f7417
https://medium.com/nebulasio/how-to-build-a-dapp-on-nebulas-part3-3586126aa124
https://medium.com/nebulasio/details-on-the-smart-contract-ranking-algorithm-part-1-723143c689c3
https://medium.com/nebulasio/details-on-the-smart-contract-ranking-algorithm-part-2-64341011e5e5
https://medium.com/nebulasio/new-nebulas-smart-contract-feature-e15046804b3c
https://medium.com/nebulasio/claim-nebulas-testnet-token-step-by-step-6156400fdd38


nebulas Documentation, ìűIJìŃIJ 1.0

• Why Choose Nebulas at a Hackathon?

• How to architect a DApp using Nuxt.js and Nebulas by Honey Thakuria

• Nebulas: JavaScript Meets Smart Contracts âĂŤâĂŤ An Intro to Nebulas for Ethereum
Smart Contract Developers by Michal Zalecki

How to use Nebulas Wallet

1. Creating A NAS Wallet Nebulas Wallet

2. Sending NAS from your Wallet Nebulas Wallet

3. Signing a Transaction Offline Nebulas Wallet

4. View Wallet Information Nebulas Wallet

5. Check TX Status Nebulas Wallet

6. Deploy a Smart Contract Nebulas Wallet

7. Call a Smart Contract on Nebulas Nebulas Wallet

• How to use NebPay in your Dapp

AMA

• Tech Reddit AMA

• Nebulas‘ First Reddit AMA Recap

• Live Reddit AMA with Nebulas Founder Hitters Xu

• Nebulas AMA Series#1 Testnet with Nebulas Co-Founder Robin Zhong

• Nebulas AMA Series#2 Testnet with Nebulas Co-Founder Robin Zhong

• Nebulas AMA Series#3 General Question with Nebulas Co-Founder Robin Zhong

• Answers from AMA with Nebulas developer Roy Shang

RPC Overview

Overview

Remote Procedure Calls (RPCs) provide a useful abstraction for building distributed ap-
plications and services.

Nebulas provides both gRPC and RESTful API for users to interact with Nebulas.

grpc provides a concrete implementation of the gRPC protocol, layered over HTTP/2.
These libraries enable communication between clients and servers using any combination of
the supported languages.

2.4. Get Involved 129

https://medium.com/nebulasio/why-choose-nebulas-at-a-hackathon-562ab8065a30
https://medium.freecodecamp.org/architecting-dapp-using-nuxt-js-nebulas-fc00712ae341
https://medium.com/@HoneyThakuria
https://www.tooploox.com/blog/nebulas-javascript-meets-smart-contracts
https://www.tooploox.com/blog/nebulas-javascript-meets-smart-contracts
https://medium.com/nebulasio/creating-a-nas-wallet-9d01b5fa2df6
https://medium.com/nebulasio/sending-nas-from-your-wallet-be1b958c4e5d
https://medium.com/nebulasio/signing-a-transaction-offline-ae8278f45201
https://medium.com/nebulasio/view-wallet-information-fcea3ea35d94
https://medium.com/nebulasio/check-tx-status-8dc7dd9b79de
https://medium.com/nebulasio/deploy-a-smart-contract-1e781e13c22e
https://medium.com/nebulasio/call-a-smart-contract-on-nebulas-3522038aec18
https://medium.com/nebulasio/how-to-use-nebpay-in-your-dapp-8e785e560fbb
https://medium.com/nebulasio/tech-reddit-ama-ab0c87484773
https://medium.com/nebulasio/nebulas-first-reddit-ama-recap-3f5b75c26c9a
https://medium.com/nebulasio/live-reddit-ama-with-nebulas-founder-hitters-xu-46e8f1a89fa
https://medium.com/nebulasio/nebulas-ama-series-1-testnet-e2b751fad48a
https://medium.com/nebulasio/nebulas-ama-series-2-testnet-with-nebulas-co-founder-and-cto-robin-zhong-b54a1b33b85e
https://medium.com/nebulasio/nebulas-ama-series-3-general-question-with-nebulas-co-founder-and-cto-robin-zhong-329d01250e00
https://medium.com/nebulasio/answers-from-the-ama-with-nebulas-lead-core-developer-roy-shang-c4382ac09424
https://grpc.io
https://github.com/grpc/grpc-go


nebulas Documentation, ìűIJìŃIJ 1.0

grpc-gateway is a plugin of protoc. It reads gRPC service definition, and generates a
reverse-proxy server which translates a RESTful JSON API into gRPC. We use it to map gRPC
to HTTP.

Endpoint

Default endpoints:

gRPC API

We can run the gRPC example testing client code:

go run main.go

The testing client gets account state from sender address, makes a transaction from sender
to receiver, and also checks the account state of receiver address.

We can see client log output like:

GetAccountState n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5 nonce 4 value
→˓3142831039999999999992
SendTransaction n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5 ->
→˓n1Zn6iyyQRhqthmCfqGBzWfip1Wx8wEvtrJ value 2 txhash:
→˓"2c2f5404a2e2edb651dff44a2d114a198c00614b20801e58d5b00899c8f512ae"
GetAccountState n1Zn6iyyQRhqthmCfqGBzWfip1Wx8wEvtrJ nonce 0 value 10

HTTP

We have also provided HTTP to access the RPC API. The file that ends with gw.go is
the mapping file. Now we can access the rpc API directly from our browser, you can update
the rpc_listen and http_listen in conf/default/config.conf to change the RPC/HTTP ports,
respectively.

Example:

curl -i -H 'Content-Type: application/json' -X GET http://
→˓localhost:8685/v1/user/nebstate

if successful, response will be returned like this

{
"result":{

"chain_id":100,
"tail":

→˓"b10c1203d5ae6d4d069d5f520eb060f2f5fb74e942f391e7cadbc2b5148dfbcb
→˓",

2.4. Get Involved 130

https://github.com/grpc-ecosystem/grpc-gateway
https://github.com/nebulasio/go-nebulas/blob/develop/rpc/testing/client/main.go


nebulas Documentation, ìűIJìŃIJ 1.0

"lib":
→˓"da30b4ed14affb62b3719fb5e6952d3733e84e53fe6e955f8e46da503300c985
→˓",

"height":"365",
"protocol_version":"/neb/1.0.0",
"synchronized":false,
"version":"0.7.0"

}
}

Or, there is an error from gRPC, and the reponse will carry the error message.

{
"error":"message..."

}

RPC methods

• GetNebState

• GetAccountState

• LatestIrreversibleBlock

• Call

• SendRawTransaction

• GetBlockByHash

• GetBlockByHeight

• GetTransactionReceipt

• GetTransactionByContract

• GetGasPrice

• EstimateGas

• GetEventsByHash

• Subscribe

• GetDynasty

RPC API Reference

GetNebState

Return the state of the neb.

2.4. Get Involved 131



nebulas Documentation, ìűIJìŃIJ 1.0

Parameters

none

Returns

chain_id Block chain id:

• 1: mainnet.

• 1001: testnet.

tail current neb tail hash.

lib current neb lib hash.

height current neb tail block height.

protocol_version current neb protocol version.

synchronized peer sync status.

version neb version.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X GET http://
→˓localhost:8685/v1/user/nebstate

// Result
{

"result":{
"chain_id":100,
"tail":

→˓"b10c1203d5ae6d4d069d5f520eb060f2f5fb74e942f391e7cadbc2b5148dfbcb
→˓",

"lib":
→˓"da30b4ed14affb62b3719fb5e6952d3733e84e53fe6e955f8e46da503300c985
→˓",

"height":"365",
"protocol_version":"/neb/1.0.0",
"synchronized":false,
"version":"0.7.0"

}
}

2.4. Get Involved 132



nebulas Documentation, ìűIJìŃIJ 1.0

GetAccountState

Return the state of the account. Balance and nonce of the given address will be returned.

Parameters

address Hex string of the account addresss.

height block account state with height. If not specified, use 0 as tail height.

Returns

balance Current balance in unit of 1/(10^18) nas.

nonce Current transaction count.

type The type of address, 87 stands for normal address and 88 stands for contract address.

height Current height of blockchain.

pending pending transactions of address in Tx pool.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/accountstate -d '{"address":
→˓"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3"}'

// Result
{

result {
"balance":"9489999998980000000000"
"nonce":51
"type":87

"height":"100",
"pending":"0"

}
}

LatestIrreversibleBlock

Return the latest irreversible block.

2.4. Get Involved 133



nebulas Documentation, ìűIJìŃIJ 1.0

Parameters

none

Returns

hash Hex string of block hash.

parent_hash Hex string of block parent hash.

height block height.

nonce block nonce.

coinbase Hex string of coinbase address.

timestamp block timestamp.

chain_id block chain id.

state_root Hex string of state root.

txs_root Hex string of txs root.

events_root Hex string of event root.

consensus_root

• Timestamp time of consensus state.

• Proposer proposer of current consensus state.

• DynastyRoot Hex string of dynasty root.

miner the miner of this block.

is_finality block is finality.

transactions block transactions slice.

• transaction GetTransactionReceipt response info.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X GET http://
→˓localhost:8685/v1/user/lib

// Result
{

"result":{
"hash":

→˓"c4a51d6241db372c1b8720e62c04426bd587e1f31054b7d04a3509f48ee58e9f
→˓",

"parent_hash":
→˓"8f9f29028356d2fb2cf1291dcee85785e1c20a2145318f36c136978edb6097ce
→˓",

2.4. Get Involved 134



nebulas Documentation, ìűIJìŃIJ 1.0

"height":"407",
"nonce":"0",
"coinbase":"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5",
"timestamp":"1521963660",
"chain_id":100,
"state_root":

→˓"a77bbcd911e7ee9488b623ce4ccb8a38d9a83fc29eb5ad43009f3517f1d3e19a
→˓",

"txs_root":
→˓"664671e2fda200bd93b00aaec4ab12db718212acd51b4624e8d4937003a2ab22
→˓",

"events_root":
→˓"2607e32c166a3513f9effbd1dc7caa7869df5989398d0124987fa0e4d183bcaf
→˓",

"consensus_root":{
"timestamp":"1521963660",
"proposer":"GVeOQnYf20Ppxa2cqTrPHdpr6QH4SKs4ZKs=",
"dynasty_root":

→˓"IfTgx0o271Gg4N3cVKHe7dw3NREnlYCN8aIl8VvRXDY="
},
"miner": "n1WwqBXVMuYC3mFCEEuFFtAXad6yxqj4as4"
"is_finality":false,
"transactions":[]

}
}

Call

Call a smart contract function. The smart contract must have been submited. Method calls
are run only on the current node, not broadcast.

Parameters

The parameters of the call method are the same as the SendTransaction parameters.
Special attention:

to Hex string of the receiver account addresss. The value of to is a contract address.

contract transaction contract object for call smart contract.

• Sub properties(source and sourceType are not need):

• function the contract call function for call contract function.

• args the params of contract. The args content is JSON string of parameters array.

2.4. Get Involved 135

rpc_admin.md#sendtransaction


nebulas Documentation, ìűIJìŃIJ 1.0

Returns

result result of smart contract method call.

execute_err execution error.

estimate_gas estimate gas used.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/call -d '{"from":
→˓"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3","to":
→˓"n1mL2WCZyRi1oELEugfCZoNAW3dt8QpHtJw","value":"0","nonce":3,
→˓"gasPrice":"20000000000","gasLimit":"2000000","contract":{
→˓"function":"transferValue","args":"[500]"}}'

// Result
{

"result": {
"result": "0",
"execute_err": "insufficient balance",
"estimate_gas": "22208"

}
}

SendRawTransaction

Submit the signed transaction. The transaction signed value should be return by Sign-
TransactionWithPassphrase.

Parameters

data Signed data of transaction

Returns

txhash Hex string of transaction hash.

contract_address returns only for deployed contract transaction.

2.4. Get Involved 136

rpc_admin.md#signtransactionwithpassphrase
rpc_admin.md#signtransactionwithpassphrase


nebulas Documentation, ìűIJìŃIJ 1.0

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/rawtransaction -d '{"data":"CiCrHtxyyIJks2/
→˓RErvBBA862D6iwAaGQ9OK1NisSGAuTBIYGiY1R9Fnx0z0uPkWbPokTeBIHFFKRaosGhgzPLPtjEF5cYRTgu3jz2egqWJwwF/
→˓i9wAiEAAAAAAAAAAADeC2s6dkAAAoAjDd/
→˓5jSBToICgZiaW5hcnlAZEoQAAAAAAAAAAAAAAAAAA9CQFIQAAAAAAAAAAAAAAAAAABOIFgBYkGLnnvGZEDSlocc202ZRWtUlbl2RHfGNdBY5eajFiHKThfgXIwGixh17LpnZGnYHlmfiGe2zqnFHdj7G8b2XIP2AQ==
→˓"}'

// Result
{

"result":{
"txhash":

→˓"f37acdf93004f7a3d72f1b7f6e56e70a066182d85c186777a2ad3746b01c3b52"
}

}

Deploy Contract Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/rawtransaction -d '{"data":"CiDam3G9Sy5fV6/
→˓ZcjasYPwSF39ZJDIHNB0Us94vn6p6ohIaGVfLzJ83pom1DO1gD307f1JdTVdDLzbMXO4aGhlXy8yfN6aJtQztYA99O39SXU1XQy82zFzuIhAAAAAAAAAAAAAAAAAAAAAAKBswwfTs1QU64AcKBmRlcGxveRLVB3siU291cmNlVHlwZSI6ImpzIiwiU291cmNlIjoiJ3VzZSBzdHJpY3QnXG5cbnZhciBUcmFuc2ZlclZhbHVlQ29udHJhY3QgPSBmdW5jdGlvbiAoKSB7XG4gICAgLy8gTG9jYWxDb250cmFjdFN0b3JnZS5kZWZpbmVQcm9wZXJ0aWVzKHRoaXMsIHtcbiAgICAvLyAgICAgdG90YWxCYWxhbmNlOiBudWxsXG4gICAgLy8gfSlcbn1cblxuXG5UcmFuc2ZlclZhbHVlQ29udHJhY3QucHJvdG90eXBlID0ge1xuICAgICBpbml0OiBmdW5jdGlvbigpIHtcbiAgICAvLyAgICAgdGhpcy50b3RhbEJhbGFuY2UgPSAwO1xuICAgICB9LFxuXG4gICAgdHJhbnNmZXI6IGZ1bmN0aW9uKHRvKSB7XG4gICAgICAgIHZhciByZXN1bHQgPSBCbG9ja2NoYWluLnRyYW5zZmVyKHRvLCBCbG9ja2NoYWluLnRyYW5zYWN0aW9uLnZhbHVlKTtcbiAgICAgICAgLy8gdmFyIHJlc3VsdCA9IEJsb2NrY2hhaW4udHJhbnNmZXIodG8sIDApO1xuICAgICAgICBpZiAoIXJlc3VsdCkge1xuXHQgICAgXHR0aHJvdyBuZXcgRXJyb3IoXCJ0cmFuc2ZlciBmYWlsZWQuXCIpO1xuICAgICAgICB9XG4gICAgICAgIHJldHVybiBCbG9ja2NoYWluLnRyYW5zYWN0aW9uLnZhbHVlO1xuICAgIH0sXG4gICAgdHJhbnNmZXJTcGVjaWFsVmFsdWU6IGZ1bmN0aW9uKHRvLCB2YWx1ZSkge1xuICAgICAgICB2YXIgYW1vdW50ID0gbmV3IEJpZ051bWJlcih2YWx1ZSk7XG4gICAgICAgIHZhciByZXN1bHQgPSBCbG9ja2NoYWluLnRyYW5zZmVyKHRvLCBhbW91bnQpO1xuICAgICAgICAvLyB2YXIgcmVzdWx0ID0gQmxvY2tjaGFpbi50cmFuc2Zlcih0bywgMCk7XG4gICAgICAgIGlmICghcmVzdWx0KSB7XG4gICAgICAgICAgICB0aHJvdyBuZXcgRXJyb3IoXCJ0cmFuc2ZlciBmYWlsZWQuXCIpO1xuICAgICAgICB9IGVsc2Uge1xuICAgICAgICAgICAgcmV0dXJuIDBcbiAgICAgICAgfVxuICAgIH0sXG4gICAgXG59XG5tb2R1bGUuZXhwb3J0cyA9IFRyYW5zZmVyVmFsdWVDb250cmFjdDsifUBkShAAAAAAAAAAAAAAAAAAD0JAUhAAAAAAAAAAAAAAAAABMS0AWAFiQcJUX32jGcduxnJCjvJ9kRcGXhSK2+h3Tb46ySjAToGAY11C7mysGEU11OE6YTd+WNAo/
→˓CEbThvI0iKcjHhgBZUB"}'

// Result
{

"result":{
"txhash":

→˓"f37acdf93004f7a3d72f1b7f6e56e70a066182d85c186777a2ad3746b01c3b52
→˓",

"contract_address":
→˓"4702b597eebb7a368ac4adbb388e5084b508af582dadde47"

}
}

GetBlockByHash

Get block header info by the block hash.

Parameters

hash Hex string of block hash.

2.4. Get Involved 137



nebulas Documentation, ìűIJìŃIJ 1.0

full_fill_transaction If true it returns the full transaction objects, if false only
the hashes of the transactions.

Returns

See LatestIrreversibleBlock response.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/getBlockByHash -d '{"hash":
→˓"c4a51d6241db372c1b8720e62c04426bd587e1f31054b7d04a3509f48ee58e9f
→˓", "full_fill_transaction":true}'

// Result
{

"result":{
"hash":

→˓"c4a51d6241db372c1b8720e62c04426bd587e1f31054b7d04a3509f48ee58e9f
→˓",

"parent_hash":
→˓"8f9f29028356d2fb2cf1291dcee85785e1c20a2145318f36c136978edb6097ce
→˓",

"height":"407",
"nonce":"0",
"coinbase":"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5",
"timestamp":"1521963660",
"chain_id":100,
"state_root":

→˓"a77bbcd911e7ee9488b623ce4ccb8a38d9a83fc29eb5ad43009f3517f1d3e19a
→˓",

"txs_root":
→˓"664671e2fda200bd93b00aaec4ab12db718212acd51b4624e8d4937003a2ab22
→˓",

"events_root":
→˓"2607e32c166a3513f9effbd1dc7caa7869df5989398d0124987fa0e4d183bcaf
→˓",

"consensus_root":{
"timestamp":"1521963660",
"proposer":"GVeOQnYf20Ppxa2cqTrPHdpr6QH4SKs4ZKs=",
"dynasty_root":

→˓"IfTgx0o271Gg4N3cVKHe7dw3NREnlYCN8aIl8VvRXDY="
},
"miner": "n1WwqBXVMuYC3mFCEEuFFtAXad6yxqj4as4"
"is_finality":false,
"transactions":[{

"hash":
→˓"1e96493de6b5ebe686e461822ec22e73fcbfb41a6358aa58c375b935802e4145
→˓",

2.4. Get Involved 138



nebulas Documentation, ìűIJìŃIJ 1.0

"chainId":100,
"from":"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3",
"to":"n1orSeSMj7nn8KHHN4JcQEw3r52TVExu63r",
"value":"10000000000000000000","nonce":"34",
"timestamp":"1522220087",
"type":"binary",
"data":null,
"gas_price":"1000000",
"gas_limit":"2000000",
"contract_address":"",
"status":1,
"gas_used":"20000"

}]
}

}

GetBlockByHeight

Get block header info by the block height.

Parameters

height Height of transaction hash.

full_fill_transaction If true it returns the full transaction objects, if false only
the hashes of the transactions.

Returns

See LatestIrreversibleBlock response.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/getBlockByHeight -d '{"height": 256, "full_
→˓fill_transaction": true}'

// Result
{

"result":{
"hash":

→˓"c4a51d6241db372c1b8720e62c04426bd587e1f31054b7d04a3509f48ee58e9f
→˓",

2.4. Get Involved 139



nebulas Documentation, ìűIJìŃIJ 1.0

"parent_hash":
→˓"8f9f29028356d2fb2cf1291dcee85785e1c20a2145318f36c136978edb6097ce
→˓",

"height":"407",
"nonce":"0",
"coinbase":"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5",
"timestamp":"1521963660",
"chain_id":100,
"state_root":

→˓"a77bbcd911e7ee9488b623ce4ccb8a38d9a83fc29eb5ad43009f3517f1d3e19a
→˓",

"txs_root":
→˓"664671e2fda200bd93b00aaec4ab12db718212acd51b4624e8d4937003a2ab22
→˓",

"events_root":
→˓"2607e32c166a3513f9effbd1dc7caa7869df5989398d0124987fa0e4d183bcaf
→˓",

"consensus_root":{
"timestamp":"1521963660",
"proposer":"GVeOQnYf20Ppxa2cqTrPHdpr6QH4SKs4ZKs=",
"dynasty_root":

→˓"IfTgx0o271Gg4N3cVKHe7dw3NREnlYCN8aIl8VvRXDY="
},
"miner": "n1WwqBXVMuYC3mFCEEuFFtAXad6yxqj4as4"
"is_finality":false,
"transactions":[{

"hash":
→˓"1e96493de6b5ebe686e461822ec22e73fcbfb41a6358aa58c375b935802e4145
→˓",

"chainId":100,
"from":"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3",
"to":"n1orSeSMj7nn8KHHN4JcQEw3r52TVExu63r",
"value":"10000000000000000000","nonce":"34",
"timestamp":"1522220087",
"type":"binary",
"data":null,
"gas_price":"1000000",
"gas_limit":"2000000",
"contract_address":"",
"status":1,
"gas_used":"20000"

}]
}

}

2.4. Get Involved 140



nebulas Documentation, ìűIJìŃIJ 1.0

GetTransactionReceipt

Get transactionReceipt info by transaction hash. If the transaction is not submitted or only
submitted but is not packaged on chain, it will return “not found“ error.

Parameters

hash Hex string of transaction hash.

Returns

hash Hex string of tx hash.

chainId Transaction chain id.

from Hex string of the sender account addresss.

to Hex string of the receiver account addresss.

value Value of transaction.

nonce Transaction nonce.

timestamp Transaction timestamp.

type Transaction type.

data Transaction data, return the payload data.

gas_price Transaction gas price.

gas_limit Transaction gas limit.

contract_address Transaction contract address.

status Transaction status, 0 - failed, 1 - success, 2 - pending.

gas_used transaction gas used

execute_error the execution error of this transaction

execute_result return value of the smart-contract function

Note: the data length of execute_result is limited to 255 Bytes, if you want to
receive a large return value from you smart-contract, please use api call instead.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/getTransactionReceipt -d '{"hash":
→˓"cda54445ffccf4ea17f043e86e54be11b002053f9edbe30ae1fbc0437c2b6a73
→˓"}'

2.4. Get Involved 141



nebulas Documentation, ìűIJìŃIJ 1.0

// Result
{

"result":{
"hash":

→˓"cda54445ffccf4ea17f043e86e54be11b002053f9edbe30ae1fbc0437c2b6a73
→˓",

"chainId":100,
"from":"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3",
"to":"n1PxKRaJ5jZHXwTfgM9WqkZJJVXBxRcggEE",
"value":"10000000000000000000",
"nonce":"53",
"timestamp":"1521964742",
"type":"binary",
"data":null,
"gas_price":"1000000",
"gas_limit":"20000",
"contract_address":"",
"status":1,
"gas_used":"20000",
"execute_error":"",
"execute_result":"\"\""

}
}

GetTransactionByContract

Get transactionReceipt info by contract address. If contract does not exist or is not pack-
aged on chain, a “not found“ error will be returned.

Parameters

address Hex string of contract account address.

Returns

The result is the same as that of GetTransactionReceipt

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/getTransactionByContract -d '{"address":
→˓"n1sqDHGjYtX6rMqFoq5Tow3s3LqF4ZxBvE3"}'

2.4. Get Involved 142



nebulas Documentation, ìűIJìŃIJ 1.0

// Result
{

"result":{
"hash":

→˓"c5a45a789278f5cce9e95e8f31c1962567f58844456fed7a6eb9afcb764ca6a3
→˓",

"chainId":100,
"from":"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3",
"to":"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3",
"value":"0",
"nonce":"1",
"timestamp":"1521964742",
"type":"deploy",
"data":

→˓"eyJTb3VyY2VUeXBlIjoianMiLCJTb3VyY2UiOiJcInVzZSBzdHJpY3RcIjtcblxudmFyIENvbnRyYWN0ID0gZnVuY3VuY3Rpb24oKSB7XG5cbiAgICAgICAgRXZlbnQuVHJpZ2dlcih.
→˓.....
→˓UmFuZG9tMlwiOiByMTIsXG4gImRlZmF1bHRTZWVkUmFuZG9tM1wiOiByMTMsXG4gICAgICAgICAgICBcInVzZXJTZWVkUmFuZG9tXCI6IHIyXG4gICAgICAgIH0pO1xuICAgIH1cbn07XG5cbm1vZHVsZS5leHBvcnRzID0gQ29udHJhY3Q7IiwiQXJncyI6IiJ9
→˓",

"gas_price":"1000000",
"gas_limit":"20000",
"contract_address":"n1sqDHGjYtX6rMqFoq5Tow3s3LqF4ZxBvE3",
"status":1,
"gas_used":"20000",
"execute_error":"",
"execute_result":"\"\""

}
}

Subscribe

Return the subscribed events of transaction & block. The request is a keep-alive connec-
tion.

Note that subscribe doesn‘t guarantee all new events will be received successfully, it
depends on the network condition. Please run a local node to use subscribe api.

Parameters

topics repeated event topic name, string array.

The topic name list:

• chain.pendingTransaction The topic of pending a transaction in transac-
tion_pool.

• chain.latestIrreversibleBlock The topic of updating latest irreversible
block.

2.4. Get Involved 143



nebulas Documentation, ìűIJìŃIJ 1.0

• chain.transactionResult The topic of executing & submitting tx.

• chain.newTailBlock The topic of setting new tail block.

• chain.revertBlock The topic of reverting block.

Returns

topic subscribed event topic name.

data subscribed event data.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/subscribe -d '{"topics":["chain.linkBlock",
→˓ "chain.pendingTransaction"]}'

// Result
{

"result":{
"topic":"chain.pendingTransaction",
"data":"{

\"chainID\":100,
\"hash\":\

→˓"b466c7a9b667db8d15f74863a4bc60bc989566b6c3766948b2cacb45a4fbda42\
→˓",

\"from\":\"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3\",
\"to\":\"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3\",
\"nonce\":6,
\"value\":\"0\",
\"timestamp\":1522215320,
\"gasprice\": \"20000000000\",
\"gaslimit\":\"20000000\",
\"type\":\"deploy\"}"

}
"result":{

"topic":"chain.pendingTransaction",
"data": "..."

}
...

}

GetGasPrice

Return current gasPrice.

2.4. Get Involved 144



nebulas Documentation, ìűIJìŃIJ 1.0

Parameters

none

Returns

gas_price gas price. The unit is 10^-18 NAS.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X GET http://
→˓localhost:8685/v1/user/getGasPrice

// Result
{

"result":{
"gas_price":"20000000000"

}
}

EstimateGas

Return the estimate gas of transaction.

Parameters

The parameters of the EstimateGas method are the same as the SendTransaction pa-
rameters.

Returns

gas the estimate gas.

err error message of the transaction being executed.

HTTP Example

2.4. Get Involved 145



nebulas Documentation, ìűIJìŃIJ 1.0

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/estimateGas -d '{"from":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5","to":
→˓"n1SAeQRVn33bamxN4ehWUT7JGdxipwn8b17", "value":
→˓"1000000000000000000","nonce":1,"gasPrice":"20000000000","gasLimit
→˓":"2000000"}'

// Result
{

"result": {
"gas":"20000",
"err":""

}
}

GetEventsByHash

Return the events list of transaction.

Parameters

hash Hex string of transaction hash.

Returns

events the events list.

• topic event topic;

• data event data.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/getEventsByHash -d '{"hash":
→˓"ec239d532249f84f158ef8ec9262e1d3d439709ebf4dd5f7c1036b26c6fe8073
→˓"}'

// Result
{

"result":{
"events":[{

2.4. Get Involved 146



nebulas Documentation, ìűIJìŃIJ 1.0

"topic":"chain.transactionResult",
"data":"{

\"hash\":\
→˓"d7977f96294cd232781d9c17f0f3212b48312d5ef0f556551c5cf48622759785\
→˓",

\"status\":1,
\"gas_used\":\"22208\",
\"error\":\"\"

}"
}]

}
}

GetDynasty

GetDynasty get dpos dynasty.

Parameters

height block height

Returns

miners repeated string of miner address.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/user/dynasty -d '{"height": 1}'

// Result
{

{
"result":{

"miners":[
"n1FkntVUMPAsESuCAAPK711omQk19JotBjM",
"n1JNHZJEUvfBYfjDRD14Q73FX62nJAzXkMR",
"n1Kjom3J4KPsHKKzZ2xtt8Lc9W5pRDjeLcW",
"n1TV3sU6jyzR4rJ1D7jCAmtVGSntJagXZHC",
"n1WwqBXVMuYC3mFCEEuFFtAXad6yxqj4as4",
"n1Zn6iyyQRhqthmCfqGBzWfip1Wx8wEvtrJ"

]

2.4. Get Involved 147



nebulas Documentation, ìűIJìŃIJ 1.0

}
}

}

Management RPC

Beside the NEB API RPC interface nebulas provides additional management APIs. Neb
console supports both API and management interfaces. Management RPC uses the same gRPC
and HTTP port, which also binds NEB API RPC interfaces.

Nebulas provide both gRPC and RESTful management APIs for users to interact with
Nebulas. Our admin proto file defines all admin APIs. We recommend using the console
access admin interfaces, or restricting the admin RPC to local access.

Default management RPC Endpoint:

Management RPC methods

• NodeInfo

• Accounts

• NewAccount

• UnLockAccount

• LockAccount

• SignTransactionWithPassphrase

• SendTransactionWithPassphrase

• SendTransaction

• SignHash

• StartPprof

• GetConfig

Management RPC API Reference

NodeInfo

Return the p2p node info.

Parameters

none

2.4. Get Involved 148

https://github.com/nebulasio/wiki/blob/master/rpc
https://github.com/nebulasio/wiki/blob/master/rpc
https://grpc.io
https://github.com/nebulasio/go-nebulas/blob/develop/rpc/pb/rpc.proto


nebulas Documentation, ìűIJìŃIJ 1.0

Returns

id the node ID.

chain_id the block chainID.

coninbase coinbase

peer_count Number of peers currently connected.

synchronized the node synchronization status.

bucket_size the node route table bucket size.

protocol_version the network protocol version.

RouteTable*[] route_table the network routeTable

message RouteTable {
string id = 1;
repeated string address = 2;

}

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X GET http://
→˓localhost:8685/v1/admin/nodeinfo

// Result
{

"result":{
"id":"QmP7HDFcYmJL12Ez4ZNVCKjKedfE7f48f1LAkUc3Whz4jP",
"chain_id":100,
"coinbase":"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5",
"peer_count":4,
"synchronized":false,
"bucket_size":64,
"protocol_version":"/neb/1.0.0",
"route_table":[

{
"id":"QmP7HDFcYmJL12Ez4ZNVCKjKedfE7f48f1LAkUc3Whz4jP

→˓",
"address":[

"/ip4/127.0.0.1/tcp/8680",
"/ip4/192.168.1.206/tcp/8680"

]
},
{

"id":"QmUxw4PZ8kMEnHD8WaSVE92dtvdnwgufM6m5DrWemdk2M7
→˓",

"address":[

2.4. Get Involved 149



nebulas Documentation, ìűIJìŃIJ 1.0

"/ip4/192.168.1.206/tcp/10003","/ip4/127.0.0.1/
→˓tcp/10003"

]
}

]
}

}

Accounts

Return account list.

Parameters

none

Returns

addresses account list

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X GET http://
→˓localhost:8685/v1/admin/accounts

// Result
{

"result":{
"addresses":[

"n1FkntVUMPAsESuCAAPK711omQk19JotBjM",
"n1JNHZJEUvfBYfjDRD14Q73FX62nJAzXkMR",
"n1Kjom3J4KPsHKKzZ2xtt8Lc9W5pRDjeLcW",
"n1NHcbEus81PJxybnyg4aJgHAaSLDx9Vtf8",
"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5",
"n1TV3sU6jyzR4rJ1D7jCAmtVGSntJagXZHC",
"n1WwqBXVMuYC3mFCEEuFFtAXad6yxqj4as4",
"n1Z6SbjLuAEXfhX1UJvXT6BB5osWYxVg3F3",
"n1Zn6iyyQRhqthmCfqGBzWfip1Wx8wEvtrJ"

]
}

}

2.4. Get Involved 150



nebulas Documentation, ìűIJìŃIJ 1.0

NewAccount

NewAccount create a new account with passphrase.

Parameters

passphrase New account passphrase.

Returns

address New Account address.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/account/new -d '{"passphrase":"passphrase
→˓"}'

// Result

{
"result":{

"address":"n1czGUvbQQton6KUWga4wKDLLKYDEn39mEk"
}

}

UnLockAccount

UnlockAccount unlock account with passphrase. After the default unlock time, the ac-
count will be locked.

Parameters

address UnLock account address.

passphrase Unlock account passphrase.

duration Unlock account duration. The unit is ns (10e-9 s).

2.4. Get Involved 151



nebulas Documentation, ìűIJìŃIJ 1.0

Returns

result UnLock account result, unit is ns.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/account/unlock -d '{"address":
→˓"n1czGUvbQQton6KUWga4wKDLLKYDEn39mEk","passphrase":"passphrase",
→˓"duration":"1000000000"}'

// Result
{

"result":{
"result":true

}
}

LockAccount

LockAccount lock account.

Parameters

address Lock account address.

Returns

result Lock account result.

HTTP Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/account/lock -d '{"address":
→˓"n1czGUvbQQton6KUWga4wKDLLKYDEn39mEk"}'

// Result
{

"result":{
"result":true

2.4. Get Involved 152



nebulas Documentation, ìűIJìŃIJ 1.0

}
}

SignTransactionWithPassphrase

SignTransactionWithPassphrase sign transaction. The transaction‘s from address must
be unlocked before the ‘sign‘ call.

Parameters

transaction this is the same as the SendTransaction parameters.

passphrase from account passphrase

Returns

data Signed transaction data.

sign normal transaction Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/sign -d '{"transaction":{"from":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5","to":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5", "value":
→˓"1000000000000000000","nonce":1,"gasPrice":"1000000","gasLimit":
→˓"2000000"}, "passphrase":"passphrase"}'

// Result
{

"result":{
"data":

→˓"CiBOW15yoZ+XqQbMNr4bQdJCXrBTehJKukwjcfW5eASgtBIaGVduKnw+6lM3HBXhJEzzuvv3yNdYANelaeAaGhlXbip8PupTNxwV4SRM87r798jXWADXpWngIhAAAAAAAAAAAA3gtrOnZAAAKAEwucHt1QU6CAoGYmluYXJ5QGRKEAAAAAAAAAAAAAAAAAAPQkBSEAAAAAAAAAAAAAAAAAAehIBYAWJB/
→˓BwhwhqUkp/
→˓gEJtE4kndoc7NdSgqD26IQqa0Hjbtg1JaszAvHZiW+XH7C+Ky9XTKRJKuTOc446646d/
→˓Sbz/nxQE="

}
}

SendTransactionWithPassphrase

SendTransactionWithPassphrase send transaction with passphrase.

2.4. Get Involved 153

https://github.com/nebulasio/wiki/blob/master/rpc_admin.md#sendtransaction


nebulas Documentation, ìűIJìŃIJ 1.0

Parameters

transaction transaction parameters, which are the same as the SendTransaction pa-
rameters.

passphrase from address passphrase.

Returns

txhash transaction hash.

contract_address returns only for deployed contract transaction.

Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/transactionWithPassphrase -d '{
→˓"transaction":{"from":"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5","to":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5", "value":
→˓"1000000000000000000","nonce":1,"gasPrice":"1000000","gasLimit":
→˓"2000000"},"passphrase":"passphrase"}'

// Result
{

"result":{
"hash":

→˓"143eac221da8079f017bd6fd6b6a08ea0623114c93c638b94334d16aae109666
→˓",

"contract_address":""
}

}

SendTransaction

Send the transaction. Parameters from, to, value, nonce, gasPrice and
gasLimit are required. If the transaction is to send contract, you must specify the
contract.

Parameters

from Hex string of the sender account addresss.

to Hex string of the receiver account addresss.

2.4. Get Involved 154

https://github.com/nebulasio/wiki/blob/master/rpc_admin.md#sendtransaction


nebulas Documentation, ìűIJìŃIJ 1.0

value Amount of value sending with this transaction. The unit is Wei (10^-18 NAS).

nonce Transaction nonce.

gas_price gasPrice sending with this transaction.

gas_limit gasLimit sending with this transaction.

type transaction payload type. If the type is specified, the transaction type is determined
and the corresponding parameter needs to be passed in, otherwise the transaction type is deter-
mined according to the contract and binary data. [optional]

• type enum:

– binary: normal transaction with binary

– deploy: deploy smart contract

– call: call smart contract function

contract transaction contract object for deployed/calling smart contract. [optional]

• Sub properties:

– source contract source code for deployed contract.

– sourceType contract source type for deployed contract. Currently support js
and ts

* js the contract source written with javascript.

* ts the contract source written with typescript.

– function the contract call function for call contarct function.

– args the params of contract. The args content is JSON string of parameters array.

binary any binary data with a length limit = 64bytes. [optional]

Notice:

• from = to when deploying a contract, the to address must be equal to the from
address.

• nonce the value is plus one(+1) on the nonce value of the current from address. Current
nonce can be obtained from GetAccountState.

• gasPrice and gasLimit needed for every transaction. We recommend using Get-
GasPrice and EstimateGas.

• contract parameter only needed for smart contract deployment and calling. When
a smart contract is deployed, the source and sourceType must be specified, the
args are optional and passed when the initialization function takes a parameter. The
function field is used to call the contract method.

Returns

txhash transaction hash.

2.4. Get Involved 155

https://github.com/nebulasio/wiki/blob/master/rpc.md/#getaccountstate
https://github.com/nebulasio/wiki/blob/master/rpc.md/#getgasprice
https://github.com/nebulasio/wiki/blob/master/rpc.md/#getgasprice
https://github.com/nebulasio/wiki/blob/master/rpc.md/#estimategas


nebulas Documentation, ìűIJìŃIJ 1.0

contract_address returns only for deploying contract transaction.

Normal Transaction Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/transaction -d '{"from":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5","to":
→˓"n1SAeQRVn33bamxN4ehWUT7JGdxipwn8b17", "value":
→˓"1000000000000000000","nonce":1000,"gasPrice":"1000000","gasLimit
→˓":"2000000"}'

// Result
{

"result":{
"txhash":

→˓"fb5204e106168549465ea38c040df0eacaa7cbd461454621867eb5abba92b4a5
→˓",

"contract_address":""
}

}

Smart Contract Deployment Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/transaction -d '{"from":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5","to":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5", "value":"0","nonce":2,
→˓"gasPrice":"1000000","gasLimit":"2000000","contract":{
"source":"\"use strict\";var BankVaultContract=function()
→˓{LocalContractStorage.defineMapProperty(this,\"bankVault\")};
→˓BankVaultContract.prototype={init:function(){},
→˓save:function(height){var deposit=this.bankVault.get(Blockchain.
→˓transaction.from);var value=new BigNumber(Blockchain.transaction.
→˓value);if(deposit!=null&&deposit.balance.length>0){var
→˓balance=new BigNumber(deposit.balance);value=value.plus(balance)}
→˓var content={balance:value.toString(),height:Blockchain.block.
→˓height+height};this.bankVault.put(Blockchain.transaction.from,
→˓content)},takeout:function(amount){var deposit=this.bankVault.
→˓get(Blockchain.transaction.from);if(deposit==null){return 0}
→˓if(Blockchain.block.height<deposit.height){return 0}var
→˓balance=new BigNumber(deposit.balance);var value=new
→˓BigNumber(amount);if(balance.lessThan(value)){return 0}var
→˓result=Blockchain.transfer(Blockchain.transaction.from,value);
→˓if(result>0){deposit.balance=balance.dividedBy(value).toString();
→˓this.bankVault.put(Blockchain.transaction.from,deposit)}return
→˓result}};module.exports=BankVaultContract;","sourceType":"js",
→˓"args":""}}'

2.4. Get Involved 156



nebulas Documentation, ìűIJìŃIJ 1.0

// Result
{

"result":{
"txhash":

→˓"3a69e23903a74a3a56dfc2bfbae1ed51f69debd487e2a8dea58ae9506f572f73
→˓",

"contract_address":"n21Y7arNbUfLGL59xgnA4ouinNxyvz773NW"
}

}

SignHash

SignHash sign the hash of a message.

Parameters

address Sign address

hash A sha3256 hash of the message, base64 encoded.

alg Sign algorithm

• 1 SECP256K1

Returns

data Signed transaction data.

sign normal transaction Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/sign/hash -d '{"address":
→˓"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5","hash":"W+rOKNqs/
→˓tlvz02ez77yIYMCOr2EubpuNh5LvmwceI0=","alg":1}'

// Result
{

"result":{
"data":

→˓"a7HHsLRvKTNazD1QEogY+Fre8KmBIyK+lNa4zv0Z72puFVkY9uZD6nGixGx/
→˓6s1x6Baq7etGwlDNxVvHsoGWbAA="

}
}

2.4. Get Involved 157



nebulas Documentation, ìűIJìŃIJ 1.0

StartPprof

StartPprof starts pprof

Parameters

listen the address to listen

Returns

result start pprof result

Example

// Request
curl -i -H 'Content-Type: application/json' -X POST http://
→˓localhost:8685/v1/admin/pprof -d '{"listen":"0.0.0.0:1234"}'

// Result
{

"result":{
"result":true

}
}

GetConfig

GetConfig return the config current neb is using

Parameters

none

Returns

config neb config

2.4. Get Involved 158



nebulas Documentation, ìűIJìŃIJ 1.0

Example

// Request
curl -i -H 'Content-Type: application/json' -X GET http://
→˓localhost:8685/v1/admin/getConfig

// Result
{

"result":{
"config":{

"network":{
"seed":[],
"listen":["0.0.0.0:8680"],
"private_key":"conf/network/ed25519key",
"network_id":1

},
"chain":{

"chain_id":100,
"genesis":"conf/default/genesis.conf",
"datadir":"data.db",
"keydir":"keydir",
"start_mine":true,
"coinbase":"n1QZMXSZtW7BUerroSms4axNfyBGyFGkrh5",
"miner":"n1Zn6iyyQRhqthmCfqGBzWfip1Wx8wEvtrJ",
"passphrase":"",
"enable_remote_sign_server":false,
"remote_sign_server":"",
"gas_price":"",
"gas_limit":"",
"signature_ciphers":["ECC_SECP256K1"]

},
"rpc":{

"rpc_listen":["127.0.0.1:8684"],
"http_listen":["127.0.0.1:8685"],
"http_module":["api","admin"],
"connection_limits":0,
"http_limits":0,
"http_cors":[]

},
"stats":{

"enable_metrics":false,
"reporting_module":[],
"influxdb":{

"host":"http://localhost:8086",
"port":0,
"db":"nebulas",
"user":"admin",
"password":"admin"

},
"metrics_tags":[]

2.4. Get Involved 159



nebulas Documentation, ìűIJìŃIJ 1.0

},
"misc":null,
"app":{

"log_level":"debug",
"log_file":"logs",
"log_age":0,
"enable_crash_report":true,
"crash_report_url":"https://crashreport.nebulas.io",
"pprof":{

"http_listen":"0.0.0.0:8888",
"cpuprofile":"",
"memprofile":""

},
"version":"0.7.0"

}
}

}
}

REPL console

Nebulas provide an interactive javascript console, which can invoke all API and manage-
ment RPC methods. The console is connected to the local node by default without specifying
host.

start console

Start console using the command:

./neb console

In the case of not specifying the configuration file, the terminal‘s startup defaults to the
configuration of conf/default/config.conf. If the local configuration file is not avail-
able or you want to specify the configuration file, the terminal starts like this:

./neb -c <config file> console

console interaction

The console can use the admin.setHost interface to specify the nodes that are con-
nected. When the console is started or the host is not specified, the terminal is interacting with
the local node. Therefore, you need to start a local node before starting the console.

> admin.setHost("https://testnet.nebulas.io")

2.4. Get Involved 160



nebulas Documentation, ìűIJìŃIJ 1.0

Tips: The Testnet only starts the RPC interface of the API, so only the api scheme is
available.

console usage

We have API and admin two schemes to access the console cmds. Users can quickly enter
instructions using the TAB key.

> api.
api.call api.getBlockByHash api.
→˓getNebState api.subscribe
api.estimateGas api.getBlockByHeight api.
→˓getTransactionReceipt
api.gasPrice api.getDynasty api.
→˓latestIrreversibleBlock
api.getAccountState api.getEventsByHash api.
→˓sendRawTransaction

> admin.
admin.accounts admin.nodeInfo
→˓ admin.signHash
admin.getConfig admin.sendTransaction
→˓ admin.signTransactionWithPassphrase
admin.lockAccount admin.
→˓sendTransactionWithPassphrase admin.startPprof
admin.newAccount admin.setHost
→˓ admin.unlockAccount

Some management methods may require passphrase. The user can pass in the password
when the interface is called, or the console prompts the user for input when the password is not
entered. We recommend using a console prompt to enter your password because it is not
visible.

Enter the password directly:

> admin.unlockAccount("n1UWZa8yuvRgePRPgp8a2jX4J9UwGXfHp6i",
→˓"passphrase")
{

"result": {
"result": true

}
}

Use terminal prompt:

> admin.unlockAccount("n1UWZa8yuvRgePRPgp8a2jX4J9UwGXfHp6i")
Unlock account n1UWZa8yuvRgePRPgp8a2jX4J9UwGXfHp6i
Passphrase:
{

"result": {

2.4. Get Involved 161



nebulas Documentation, ìűIJìŃIJ 1.0

"result": true
}

}

The interfaces with passphrase prompt:

admin.newAccount
admin.unlockAccount
admin.signHash
admin.signTransactionWithPassphrase
admin.sendTransactionWithPassphrase

The command parameters of the command line are consistent with the parameters of the
RPC interface. NEB RPC and NEB RPC_Admin.

console exit

The console can exit with the ctrl-C or exit command.

2.4.8 Tutorials

Here is all you need to dive into Nebulas.

NebulasIO

• Website: https://nebulas.io

• Non-Tech Whitepaper: [PDF]

• Tech Whitepaper: [PDF], [GitHub]

• Yellow Paper - Nebulas Rank: [PDF], [GitHub]

• Mauve Paper - Developer Incentive Protocol: [PDF], [GitHub]

• Orange Paper - Nebulas Governance: [PDF], [GitHub]

Go-Nebulas

• Wiki: https://github.com/nebulasio/wiki

• Join the Testnet: https://github.com/nebulasio/wiki/blob/master/testnet.md

• Join the Mainnet: https://github.com/nebulasio/wiki/blob/master/mainnet.md

• Explorer: https://explorer.nebulas.io

• Tutorials:

– Nebulas 101

2.4. Get Involved 162

https://github.com/nebulasio/wiki/blob/master/rpc
https://github.com/nebulasio/wiki/blob/master/rpc_admin
https://nebulas.io
https://nebulas.io/docs/NebulasWhitepaper.pdf
https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf
https://github.com/nebulasio/whitepaper
https://nebulas.io/docs/NebulasYellowpaper.pdf
https://github.com/nebulasio/nr-report
https://nebulas.io/docs/NebulasMauvepaper.pdf
https://github.com/nebulasio/dip-report
https://nebulas.io/docs/NebulasOrangepaper.pdf
https://github.com/nebulasio/governance-paper
https://github.com/nebulasio/wiki
https://github.com/nebulasio/wiki/blob/master/testnet
https://github.com/nebulasio/wiki/blob/master/mainnet
https://explorer.nebulas.io


nebulas Documentation, ìűIJìŃIJ 1.0

* Installation (credit: Victor)

* Sending a Transaction (credit: Victor)

* Writing Smart Contract in JavaScript (credit: otto)

* Introducing Smart Contract Storage (credit: Victor)

* Interacting with Nebulas by RPC API (credit: Victor)

Wallet

• Web Wallet: https://github.com/nebulasio/web-wallet

– English

* Creating A NAS Wallet

* Sending NAS from your Wallet

* Signing a Transaction Offline

* View Wallet Information

* Check TX Status

* Deploy a Smart Contract

DApp Development

• Web SDK: https://github.com/nebulasio/neb.js

• Smart Contract: https://github.com/nebulasio/wiki/blob/master/smart_contract.md

• Standard Protocol:

– NRC20: https://github.com/nebulasio/wiki/blob/master/NRC20.md

Community Tools

• Nebulearn: https://nebulearn.com/official-docs/go-nebulas (credit: Tehjr)

• Demo DApp: https://github.com/15010159959/super-dictionary (credit: ChengOr-
angeJu, yupnano, Kurry)

• Chrome Extension: https://github.com/ChengOrangeJu/WebExtensionWallet (credit:
ChengOrangeJu, yupnano)

Contribution

You are welcome to contribute to the Nebulas ecosystem in any way that you can. If you
write something, please let us know by submitting an issue, and we will add your name and url
to this page as soon as possible.

2.4. Get Involved 163

https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/tutorials/01-installation
https://github.com/victorychain
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/tutorials/02-transaction
https://github.com/victorychain
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/tutorials/03-smart-contracts-javascript
https://github.com/ottokafka
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/tutorials/04-smart-contract-storage
https://github.com/victorychain
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/tutorials/05-interacting-with-nebulas-by-rpc-api
https://github.com/victorychain
https://github.com/nebulasio/web-wallet
https://medium.com/nebulasio/creating-a-nas-wallet-9d01b5fa2df6
https://medium.com/nebulasio/sending-nas-from-your-wallet-be1b958c4e5d
https://medium.com/nebulasio/signing-a-transaction-offline-ae8278f45201
https://medium.com/nebulasio/view-wallet-information-fcea3ea35d94
https://medium.com/nebulasio/check-tx-status-8dc7dd9b79de
https://medium.com/nebulasio/deploy-a-smart-contract-1e781e13c22e
https://github.com/nebulasio/neb.js
https://github.com/nebulasio/wiki/blob/master/smart_contract
https://github.com/nebulasio/wiki/blob/master/NRC20
https://nebulearn.com/official-docs/go-nebulas
https://github.com/HermantNET
https://github.com/15010159959/super-dictionary
https://github.com/ChengOrangeJu
https://github.com/ChengOrangeJu
https://github.com/yupnano
https://github.com/15010159959
https://github.com/ChengOrangeJu/WebExtensionWallet
https://github.com/ChengOrangeJu
https://github.com/yupnano
https://github.com/nebulasio/wiki/issues/new


nebulas Documentation, ìűIJìŃIJ 1.0

2.4.9 Community

Dynamics

• (01/31/2019) - Nebulas Had A Fruitful Trip to Korea!

• (01/29/2019) - Week 1 Winners of Nebulas NOVA Testnet Developer Incentive Program

• (01/23/2019) - Game of Chains 2019: An Interview with Dr. Chen of Nebulas

• (01/23/2019) - Winners of Nebulas NOVA Developer Incentive Program AMA

• (01/22/2019) - Nebulas NOVA Testnet Developer Incentive Program Launches Today

• (01/17/2019) - The First Winners of Nebulas Wiki Bounty Program

• (01/11/2019) - Understanding Nebulas NOVA (Part 2)

• (01/11/2019) - Nebulas New Explorer Goes Live

• (01/10/2019) - AMA on Nebulas NOVA Developer Incentive Program

• (01/09/2019) - Nebulas Testnet Developer Incentive Program Event Guide

• (01/05/2019) - Nebulas 2018; the year in review!

• (01/04/2019) - How well do you know Nebulas NOVA?

• (01/03/2019) - Understanding Nebulas NOVA (Part 1)

• (12/31/2018) - Nebulas NOVA Testnet Released, Public Beta Testing Begins!

• (12/29/2018) - The Nebulas That IâĂŹm Looking Forward to

• (12/27/2018) - NAS nano has been upgraded to NAS nano pro

• (12/22/2018) - The Inspiration Behind the Nebulas NOVA Design

• (12/21/2018) - Why Join Nebulas

• (12/20/2018) - LetâĂŹs Check Your Core Nebulas Rank!

• (12/11/2018) - NebulersâĂŹ Thoughts on the Future of Blockchain

• (12/06/2018) - Behold: The Age of Nebulas NOVA is Upon Us!

• (11/28/2018) - Nebulas Collaborates with Key Universities at Home and Abroad - Shar-
ing the Nebulas Wisdom

• (11/22/2018) - Public Chain TechnologyâĂŁâĂŤâĂŁthe future of blockchain?

• (11/21/2018) - Exploring the Public Chain Technology Al-
lianceâĂŁâĂŤâĂŁBlockchainâĂŹs bridge from concept to creation!

• (11/19/2018) - To Introduce 100 Million Incremental Users to the Blockchain World

• (11/14/2018) - Nebulers are all over the world!

• (11/14/2018) - Embrace An Open and Mutually Beneficial Blockchain Ecosystem

2.4. Get Involved 164

https://medium.com/nebulasio/nebulas-had-a-fruitful-trip-to-korea-aa293a4aa179
https://medium.com/nebulasio/week-1-winners-of-nebulas-nova-testnet-developer-incentive-program-f854518aeafa
https://medium.com/nebulasio/game-of-chains-2019-an-interview-with-dr-chen-of-nebulas-b836336c66e1
https://medium.com/nebulasio/winners-of-nebulas-nova-developer-incentive-program-ama-c745b5ea7ce5
https://medium.com/nebulasio/nebulas-nova-testnet-developer-incentive-program-launches-today-59bbb58db940
https://medium.com/nebulasio/the-first-winners-of-nebulas-wiki-bounty-program-f6e1806aeb1
https://medium.com/nebulasio/understanding-nebulas-nova-part-2-884d77959f75
https://medium.com/nebulasio/nebulas-new-explorer-goes-live-fb30b27fc590
https://medium.com/nebulasio/ama-on-nebulas-nova-developer-incentive-program-8b7aabef0a0e
https://medium.com/nebulasio/nebulas-testnet-developer-incentive-program-dip-event-guide-26a0d69ec76d
https://medium.com/nebulasio/nebulas-2018-the-year-in-review-917df986bda7
https://medium.com/nebulasio/about-nebulas-nova-how-well-do-you-know-ca0418181c1b
https://medium.com/nebulasio/understanding-nebulas-nova-part-1-c0e2dc831da1
https://medium.com/nebulasio/nebulas-nova-testnet-released-public-beta-testing-begins-c50869636d9b
https://medium.com/nebulasio/the-nebulas-that-im-looking-forward-to-4ce3b05c177d
https://medium.com/nebulasio/nas-nano-has-been-upgraded-to-nas-nano-pro-ec9a2115eede
https://medium.com/nebulasio/the-inspiration-behind-the-nebulas-nova-design-5f8e327486e8
https://medium.com/nebulasio/why-join-nebulas-eeda9a8c397c
https://medium.com/nebulasio/lets-check-your-core-nebulas-rank-8ede72783e1c
https://medium.com/nebulasio/in-blockchain-we-trust-ade18da5c34b
https://medium.com/nebulasio/behold-the-age-of-nebulas-nova-is-upon-us-2d425661425b
https://medium.com/nebulasio/sharing-the-nebulas-wisdom-d8658c38502d
https://medium.com/nebulasio/sharing-the-nebulas-wisdom-d8658c38502d
https://medium.com/nebulasio/public-chain-technology-the-future-of-blockchain-997a0a5fc5f9
https://medium.com/nebulasio/exploring-the-public-chain-technology-alliance-blockchains-bridge-from-concept-to-creation-2614fd86800
https://medium.com/nebulasio/exploring-the-public-chain-technology-alliance-blockchains-bridge-from-concept-to-creation-2614fd86800
https://medium.com/nebulasio/set-a-small-goal-first-to-introduce-100-million-incremental-users-to-the-blockchain-world-f6bb6114dfed
https://medium.com/nebulasio/nebulers-are-all-over-the-world-9aea249c1416
https://medium.com/nebulasio/embrace-an-open-and-win-win-blockchain-ecosystem-99ac10a7a662


nebulas Documentation, ìűIJìŃIJ 1.0

• (11/12/2018) - DApp Development and Architecture DesignâĂŁâĂŤâĂŁInterview with
Honey Thakuria

• (11/05/2018) - Let #NebulasNOVA Be a Hot Trend on TwitterïijĄ

• (11/01/2018) - Join Our Mauve Paper Reading Activity!

• (10/25/2018) - Nebulas Joining Public Chain Technology Alliance (PCTA) to Empower
Developers Community

• (10/12/2018) - Nebulas Partners with UDAP to Tokenize Everything

• (09/28/2018) - Nebulas Partners with WeOne to Accelerate Global Esports Growth on
the Blockchain

• (09/27/2018) - NAS nano Receives Security Audit from Knownsec

• (09/20/2018) - Liberal Radicalism: Can Quadratic Voting Be the Perfect Voting System?

• (09/04/2018) - Hello Beijing and Nebulas Team

• (08/29/2018) - Nebulas Achieving Cooperation with Knownsec, Multiple Protection and
Big Data Technologies Supporting Nebulas Ecosystem Security

• (08/24/2018) - Nebulas Community Meetup ReportâĂŁâĂŤâĂŁAmbassadors Visit Bei-
jing

• (08/09/2018) - Seeing Through The Blockchain Bubble: Sitting Down For An Interview
With Nebulas.io Founder Hitters Xu

• (08/07/2018) - Blockchain Pioneers Initiate âĂIJBitsclub Vision ProgramâĂİ to Create
Seamless Connection of Classical Industry and Blockchain

• (08/01/2018) - Nebulas Featured on ChinaâĂŹs Official State Website

• (08/01/2018) - Why I Love NebulasâĂŁâĂŤâĂŁPart 1: JavaScript!

• (07/31/2018) - Nebulas Partners with JOYSO to Deploy Cutting-Edge Decentralized Ex-
change

• (07/30/2018) - NAS Nano v2.0 is Officially Released

• (07/28/2018) - GO ! Nebulers ð§ŸĘ

• (07/28/2018) - Nebulas Incentive Program Recap

• (07/27/2018) - Nebulas Melbourne Meet-up, July 23, 2018

• (07/26/2018) - An open letter to the Nebulas community.

• (07/24/2018) - Nebulas Partners with Cocos

• (07/20/2018) - Nebulas in the Top Three of MIITâĂŹs Public Blockchain Evaluation list

• (07/17/2018) - Nebulas Partners with KingSoft Cloud (KSYUN) to Explore Blockchain
Games

• (07/13/2018) - What Nebulas Research Team Says About Nebulas Rank Yellow Paper

• (07/12/2018) - Nebulas and Egretia Reach Strategic Cooperation

2.4. Get Involved 165

https://medium.com/nebulasio/dapp-development-and-architecture-design-interview-with-honey-thakuria-abf0fab0c19f
https://medium.com/nebulasio/dapp-development-and-architecture-design-interview-with-honey-thakuria-abf0fab0c19f
https://medium.com/nebulasio/let-nebulasnova-be-a-hot-trend-on-twitter-e1f6cca28015
https://medium.com/nebulasio/join-our-mauve-paper-reading-activity-16b73f91f789
https://medium.com/nebulasio/nebulas-joining-public-chain-technology-alliance-pcta-to-empower-developers-community-fbb50c170782
https://medium.com/nebulasio/nebulas-joining-public-chain-technology-alliance-pcta-to-empower-developers-community-fbb50c170782
https://medium.com/nebulasio/nebulas-partners-with-udap-to-tokenize-everything-455b0600be57
https://medium.com/nebulasio/nebulas-partners-with-weone-to-accelerate-global-esports-growth-on-the-blockchain-f5e51ce2279d
https://medium.com/nebulasio/nebulas-partners-with-weone-to-accelerate-global-esports-growth-on-the-blockchain-f5e51ce2279d
https://medium.com/nebulasio/nas-nano-receives-security-audit-from-knownsec-91d34cd35f55
https://medium.com/nebulasio/liberal-radicalism-can-quadratic-voting-be-the-perfect-voting-system-e958408567b2
https://medium.com/nebulasio/hello-beijing-and-nebulas-team-64ab9724650c
https://medium.com/nebulasio/nebulas-achieving-cooperation-with-knownsec-multiple-protection-and-big-data-technologies-b1b9b7f81bc
https://medium.com/nebulasio/nebulas-achieving-cooperation-with-knownsec-multiple-protection-and-big-data-technologies-b1b9b7f81bc
https://medium.com/nebulasio/nebulas-community-meetup-has-been-completed-well-fe899bb5fded
https://medium.com/nebulasio/nebulas-community-meetup-has-been-completed-well-fe899bb5fded
https://medium.com/nebulasio/seeing-through-the-blockchain-bubble-sitting-down-for-an-interview-with-nebulas-io-8e99ccb3b69f
https://medium.com/nebulasio/seeing-through-the-blockchain-bubble-sitting-down-for-an-interview-with-nebulas-io-8e99ccb3b69f
https://medium.com/nebulasio/blockchain-pioneers-initiate-bitsclub-vision-program-to-create-seamless-connection-of-classical-b5c10bf6fabb
https://medium.com/nebulasio/blockchain-pioneers-initiate-bitsclub-vision-program-to-create-seamless-connection-of-classical-b5c10bf6fabb
https://medium.com/nebulasio/nebulas-featured-on-chinas-official-state-website-92f2b81f196c
https://medium.com/nebulasio/why-i-love-nebulas-part-1-javascript-d352f7726e53
https://medium.com/nebulasio/nebulas-partners-with-joyso-to-deploy-cutting-edge-decentralized-exchange-88ed0698175d
https://medium.com/nebulasio/nebulas-partners-with-joyso-to-deploy-cutting-edge-decentralized-exchange-88ed0698175d
https://medium.com/nebulasio/nas-nano-v2-0-is-officially-released-6bd5e98e79a8
https://medium.com/nebulasio/go-nebulers-b45d019e5fe1
https://medium.com/nebulasio/nebulas-incentive-program-recap-fb37dfcc0734
https://medium.com/nebulasio/nebulas-melbourne-meet-up-july-23-2018-cf179174b9da
https://medium.com/nebulasio/an-open-letter-to-the-nebulas-community-b1c82464f0b3
https://medium.com/nebulasio/nebulas-partners-with-cocos-d5067ded40fa
https://medium.com/nebulasio/nebulas-in-the-top-three-of-miits-public-blockchain-evaluation-list-efd29e335268
https://medium.com/nebulasio/nebulas-partners-with-kingsoft-cloud-ksyun-to-explore-blockchain-games-92b11b5137f2
https://medium.com/nebulasio/nebulas-partners-with-kingsoft-cloud-ksyun-to-explore-blockchain-games-92b11b5137f2
https://medium.com/nebulasio/what-nebulas-research-team-says-about-nebulas-rank-yellow-paper-68beceaced62
https://medium.com/nebulasio/nebulas-and-egretia-reach-strategic-cooperation-64937784814f


nebulas Documentation, ìűIJìŃIJ 1.0

• (07/08/2018) - Why Choose Nebulas at a Hackathon?

• (07/05/2018) - Official Interpretation of âĂIJNebulas Rank Yellow PaperâĂİ

• (07/03/2018) - Nebulas Attended The Silicon Valley Blockchain Week

• (06/30/2018) - âĂIJThe Nebulas Rank Yellow PaperâĂİ is now public, providing the
blockchain world with a more complete value measurement system.

• (06/24/2018) - Nebulas and Udacity partner to create the Global Blockchain Talent Schol-
arship

• (06/24/2018) - Nebulas mainnet transaction volume exceeds Ethereum, reaching nearly
700,000 for the first time

• (06/23/2018) - Cell Evolution raises 5 million RMB at more than $4.5 million USD
valuation

• (06/14/2018) - Nebulas selected by ChinaâĂŹs MIIT in Global Public Chain Evaluation

• (06/14/2018) - SPIKING and NEBULAS Partner to Develop Financial Signals Search
and Processing Technology for All Blockchains

• (06/09/2018) - Nebulas welcomes DeepCloud AI

• (06/01/2018) - Experienced Game Developer Bids Adieu to Ethereum and Embraces
Nebulas

• (05/31/2018) - Nebulas launches DApp Store in NAS Nano update

• (05/29/2018) - Nebulas CTO Robin Zhong: âĂIJSuper nodes lead to split communi-
tiesâĂİ, and the three key criteria for evaluating âĂŸblockchain 3.0âĂŹ

• (05/29/2018) - Latest Nebulas update paves the way for blockchain games and more!

• (05/08/2018) - Nebulas and Tencent GIS Meetup Promotes Blockchain Innovation

• (05/01/2018) - Nebulas Labs and Atlas Protocol will join Silicon Valley Entrepreneurs
Festival

• (04/25/2018) - Next month: Nebulas to host its first workshops and hackathons in the
US, and attend Consensus 2018 in New York City

• (04/10/2018) - LLVM x Blockchain

• (03/17/2018) - NAS Center Grand Opening & Nebulas Mainnet Launch Celebration

• (03/02/2018) - Thinking In Blockchain, a Nebulas meetup @Berkeley

• (03/02/2018) - Nebulas Enters Strategic Partnership with Dolphin Browser to Integrate
the Nebulas Blockchain within its 200m User Ecosystem

• (02/16/2018) - Decentralization is the Essence of Blockchain

• (01/29/2018) - Crypto bubble 2018: Things we can do before it bursts

• (01/18/2018) - Nebulas Partners with GIFTO to Organize Blockchain Virtual Gifts for
30 Million Users

2.4. Get Involved 166

https://medium.com/nebulasio/why-choose-nebulas-at-a-hackathon-562ab8065a30
https://medium.com/nebulasio/official-interpretation-of-nebulas-rank-yellow-paper-dd18293cd9a9
https://medium.com/nebulasio/nebulas-attended-the-silicon-valley-blockchain-week-313066d384d4
https://medium.com/nebulasio/the-nebulas-rank-yellow-paper-is-now-public-providing-the-blockchain-world-with-a-more-complete-b40ee61b0b45
https://medium.com/nebulasio/the-nebulas-rank-yellow-paper-is-now-public-providing-the-blockchain-world-with-a-more-complete-b40ee61b0b45
https://medium.com/nebulasio/nebulas-and-udacity-partner-to-create-the-global-blockchain-talent-scholarship-1ac652ec16f9
https://medium.com/nebulasio/nebulas-and-udacity-partner-to-create-the-global-blockchain-talent-scholarship-1ac652ec16f9
https://medium.com/nebulasio/nebulas-mainnet-transaction-volume-exceeds-ethereum-reaching-nearly-700-000-for-the-first-time-6128bda020b8
https://medium.com/nebulasio/nebulas-mainnet-transaction-volume-exceeds-ethereum-reaching-nearly-700-000-for-the-first-time-6128bda020b8
https://medium.com/nebulasio/cell-evolution-raises-5-million-rmb-at-more-than-4-5-million-usd-valuation-1f034ba963ee
https://medium.com/nebulasio/cell-evolution-raises-5-million-rmb-at-more-than-4-5-million-usd-valuation-1f034ba963ee
https://medium.com/nebulasio/nebulas-selected-by-chinas-miit-in-global-public-chain-evaluation-1f1b3927bec8
https://medium.com/nebulasio/spiking-and-nebulas-partner-to-develop-financial-signals-search-and-processing-technology-for-all-b0fdf60d9910
https://medium.com/nebulasio/spiking-and-nebulas-partner-to-develop-financial-signals-search-and-processing-technology-for-all-b0fdf60d9910
https://medium.com/nebulasio/nebulas-welcomes-deepcloud-ai-c55781b1b470
https://medium.com/nebulasio/mobile-games-big-say-goodbye-to-ethereum-turning-funs-of-nebulas-68f3b7455b53
https://medium.com/nebulasio/mobile-games-big-say-goodbye-to-ethereum-turning-funs-of-nebulas-68f3b7455b53
https://medium.com/nebulasio/nebulas-launches-dapp-store-in-nas-nano-update-b3d2e26d4943
https://medium.com/nebulasio/nebulas-cto-robin-zhong-super-nodes-lead-to-community-splits-and-three-criteria-for-evaluating-c87a182dff27
https://medium.com/nebulasio/nebulas-cto-robin-zhong-super-nodes-lead-to-community-splits-and-three-criteria-for-evaluating-c87a182dff27
https://medium.com/nebulasio/latest-nebulas-update-paves-the-way-for-blockchain-games-and-more-e678d9a1715a
https://medium.com/nebulasio/nebulas-and-tencent-gis-meetup-promotes-innovation-in-blockchain-2c2e642c3968
https://medium.com/nebulasio/nebulas-labs-and-atlas-protocol-will-join-silicon-valley-entrepreneurs-festival-6641f4b62100
https://medium.com/nebulasio/nebulas-labs-and-atlas-protocol-will-join-silicon-valley-entrepreneurs-festival-6641f4b62100
https://medium.com/nebulasio/next-month-nebulas-to-host-its-first-workshops-and-hackathons-in-the-us-and-attend-consensus-2018-d131025994dd
https://medium.com/nebulasio/next-month-nebulas-to-host-its-first-workshops-and-hackathons-in-the-us-and-attend-consensus-2018-d131025994dd
https://medium.com/nebulasio/llvm-x-blockchains-4a5d6d6ecffc
https://medium.com/nebulasio/nebulas-sf-hq-grand-opening-mainnet-launch-celebration-a9d0027763a5
https://medium.com/nebulasio/thinking-in-blockchain-a-berkeley-meetup-4406a432454f
https://medium.com/nebulasio/nebulas-enters-strategic-partnership-with-dolphin-browser-eb03d046eaa8
https://medium.com/nebulasio/nebulas-enters-strategic-partnership-with-dolphin-browser-eb03d046eaa8
https://medium.com/nebulasio/decentralization-is-the-essence-of-blockchain-ccc9e7ba839c
https://medium.com/nebulasio/crypto-bubble-2018-things-we-can-do-before-it-bursts-3a0d86fcd117
https://medium.com/nebulasio/nebulas-partners-with-gifto-to-organize-blockchain-virtual-gifts-for-30-million-users-645ecb02b546
https://medium.com/nebulasio/nebulas-partners-with-gifto-to-organize-blockchain-virtual-gifts-for-30-million-users-645ecb02b546


nebulas Documentation, ìűIJìŃIJ 1.0

Events

Since June 2017, the Nebulas meetups and hackathons have been held in 17 cities, 8
countries around the world. We have visited the University of California, Berkeley, the New
York University, Columbia University, Harvard University, the Singapore University of Social
Sciences, Tsinghua University, Tongji University, and many others.

Events History >

You are welcome to organize local meetups and participate in the history of Nebulas!

Nebulas Community

Announcement

• (04/08/2019) - Nebulas Community Group (community consultation draft)

• (04/03/2019) - The Declaration of Nebulas Independence: Nebulas Governance is Ap-
proaching

• (03/25/2019) - Go Nebulas: the future of collaboration!

• (01/29/2019) - Nebulas NOVA Testnet Developer Incentive Program Launches Today

• (12/27/2018) - NAS nano has been upgraded to NAS nano pro

• (12/07/2018) - Nebulas Wiki Bounty Program

• (12/05/2018) - Announcement: Nebulas Testnet Operation Maintenance

• (11/27/2018) - Nebulas Bug Bounty Improvement

• (10/17/2018) - ATP Smartdrop Applying Process Begins

• (10/15/2018) - Nebulas Mainnet Snapshot of ATP Smartdrop Ended

• (10/10/2018) - Announcement on Token Swap Ends via NAS nano

• (10/08/2018) - Claim Instructions of ATP Smartdrop

• (09/25/2018) - Upgrading NAS nano to Version 2.2.0

• (09/25/2018) - Announcing the NAS Token Swap via NAS nano v2.2.0

• (09/21/2018) - Nebulas Nova: âĂIJDiscover Value in an Organized Blockchain
WorldâĂİ

• (09/13/2018) - Announcing the Nebulas Technical Committee

• (09/01/2018) - Announcing Unreleased NAS Locking Addresses

• (08/30/2018) - Increasing Bug Bounty Rewards for Inter-contract Call Functions Testing

• (08/22/2018) - Nebulas Testnet Inter-contract Call Function Public Beta Bounty

• (08/21/2018) - Nebulas Mainnet Security Upgrade Notice

• (08/08/2018) - Announcing the Adjustment of Reserved NAS Distribution to the Nebulas
Team

2.4. Get Involved 167

https://medium.com/nebulasio/nebulas-events-7a8674690d77
https://medium.com/nebulasio/nebulas-community-group-community-consultation-draft-3fe20bf682bb
https://medium.com/nebulasio/the-declaration-of-nebulas-independence-nebulas-governance-is-approaching-f772a4175761
https://medium.com/nebulasio/the-declaration-of-nebulas-independence-nebulas-governance-is-approaching-f772a4175761
https://medium.com/nebulasio/go-nebulas-the-future-of-collaboration-7a747177660f
https://medium.com/nebulasio/nebulas-nova-testnet-developer-incentive-program-launches-today-59bbb58db940
https://medium.com/nebulasio/nas-nano-has-been-upgraded-to-nas-nano-pro-ec9a2115eede
https://medium.com/nebulasio/nebulas-wiki-bounty-program-32048077e16c
https://medium.com/nebulasio/announcement-nebulas-testnet-operation-maintenance-2e6992795ee5
https://medium.com/nebulasio/nebulas-bug-bounty-program-c026e63d8a20
https://medium.com/nebulasio/atp-smartdrop-applying-process-begins-1a51a72a1e79
https://medium.com/nebulasio/nebulas-mainnet-snapshot-of-atp-smartdrop-ended-9f169bd498c4
https://medium.com/nebulasio/announcement-on-token-swap-ends-via-nas-nano-86a885576eef
https://medium.com/nebulasio/claim-instructions-of-atp-smartdrop-cf65877eabf9
https://medium.com/nebulasio/upgrading-the-nas-nano-to-version-2-2-0-474f78c348bd
https://medium.com/nebulasio/announcing-the-nas-token-swap-via-nas-nano-v2-2-0-62d13b1b02bc
https://medium.com/nebulasio/nebulas-nova-discover-value-in-an-organized-blockchain-world-852fd6f1be3
https://medium.com/nebulasio/nebulas-nova-discover-value-in-an-organized-blockchain-world-852fd6f1be3
https://medium.com/nebulasio/announcing-the-nebulas-technical-committee-f3a786e77237
https://medium.com/nebulasio/announcing-unreleased-nas-locking-addresses-adf275699260
https://medium.com/nebulasio/increasing-bug-bounty-rewards-for-inter-contract-call-functions-testing-35075756e3b3
https://medium.com/nebulasio/nebulas-testnet-inter-contract-call-function-public-beta-bounty-57e1e57dc39e
https://medium.com/nebulasio/nebulas-mainnet-security-upgrade-notice-db6c473c26e7
https://medium.com/nebulasio/announcement-on-the-adjustment-of-the-way-nebulas-team-distribute-the-nas-reserved-6d35d172e2ef
https://medium.com/nebulasio/announcement-on-the-adjustment-of-the-way-nebulas-team-distribute-the-nas-reserved-6d35d172e2ef


nebulas Documentation, ìűIJìŃIJ 1.0

• (06/29/2018) - Nebulas Mainnet Token Swap Announcement

• (06/28/2018) - Nebulas Rank Yellow PaperâĂŁâĂŤâĂŁBlockchain 3.0 Primer

• (06/20/2018) - Nebulas Mainnet Upgrade

• (05/11/2018) - Supplementary explanation for NAS mainnet coinswap

• (04/30/2018) - Announcement on NAS mainnet coin swap starts in exchanges

• (04/25/2018) - Statement on Asset Security from the Nebulas Tech Team

• (04/13/2018) - Important Announcement on the Nebulas Lock Up Bonus Program

• (03/29/2018) - Nebulas Foundation Notice

• (03/27/2018) - Nebulas Testnet Upgrade Announcement

• (12/13/2017) - Disclaimer Regarding Private Pools for NAS Pre-Sale

• (12/13/2017) - New Pricing Rules for NAS Pre-Sale Early Bird Participants

• (11/24/2017) - Initiation of âĂIJNAS Token Bonus ProgramâĂİ

Weekly Report

You can take a quick look at all the Nebulas weekly reports here.

• Weekly Report #75 (04/08/2019) - Nebulas Bi-Weekly Development Commits #76

• Weekly Report #75 (04/01/2019) - Nebulas Weekly Report #75 Go Nebulas has Liftoff!

• Weekly Report #74 (03/25/2019) - Nebulas Bi-Weekly Development Commits #74

• Weekly Report #73 (03/18/2019) - Nebulas Weekly Report #73: PCTA meetup and AMA
sessions

• Weekly Report #72 (03/11/2019) - Nebulas Bi-Weekly Development Commits #72

• Weekly Report #71 (03/04/2019) - Nebulas Weekly Report #71: Nebulas community
development roadmap officially released

• Weekly Report #70 (02/25/2019) - Nebulas Bi-Weekly Development Commits #70

• Weekly Report #69 (02/19/2019) - Nebula Weekly Report #69: Nebulas Actively Explore
Japan & Hong Kong Market in The New Year

• Weekly Report #68 (02/12/2019) - Nebulas Bi-Weekly Development Commits #68

• Weekly Report #67 (02/04/2019) - Nebulas Bi-Weekly Community Dynamics#67

• Weekly Report #66 (01/29/2019) - Development: Nebulas Bi-Weekly Development
Commits #66

• Weekly Report #65 (01/22/2019) - Community: Nebulas Bi-Weekly Community Dy-
namics#65

• Weekly Report #64 (01/15/2019) -Development : We are currently working on new API
features and more test cases via the testnet

2.4. Get Involved 168

https://medium.com/nebulasio/nebulas-mainnet-token-swap-announcement-5840034d1e83
https://medium.com/nebulasio/nebulas-rank-yellow-paper-blockchain-3-0-primer-be97ee349022
https://medium.com/nebulasio/nebulas-mainnet-upgrade-c8a0c4249230
https://medium.com/nebulasio/supplementary-explanation-for-nas-mainnet-coinswap-130e17321025
https://medium.com/nebulasio/announcement-on-nas-mainnet-coin-swap-starts-in-exchanges-d23c7b499d3e
https://medium.com/nebulasio/nebulas-tech-team-statement-on-asset-safety-f57ee3d5068a
https://medium.com/nebulasio/important-announcement-on-the-nebulas-lock-up-bonus-program-6a230e1c3815
https://medium.com/nebulasio/nebulas-foundation-notice-f5ee21d2f132
https://medium.com/nebulasio/nebulas-testnet-upgrade-announcement-af450430c67
https://medium.com/nebulasio/disclaimer-regarding-private-pools-for-nas-pre-sale-769d54f6104b
https://medium.com/nebulasio/new-pricing-rules-for-nas-pre-sale-early-bird-participants-44d00598f292
https://medium.com/nebulasio/initiation-of-nas-lock-1-get-1-project-525eab014055
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-76-d499defe8c6d
https://medium.com/nebulasio/nebulas-weekly-report-73-go-nebulas-has-liftoff-99bcf7bfb2a9
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-74-26f865e399a0
https://medium.com/nebulasio/nebulas-weekly-report-73-pcta-meetup-and-ama-sessions-e0493e5b6f1a
https://medium.com/nebulasio/nebulas-weekly-report-73-pcta-meetup-and-ama-sessions-e0493e5b6f1a
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-72-b1306160bbfa
https://medium.com/nebulasio/nebula-weekly-report-71-nebulas-community-development-roadmap-officially-released-e61397c3e477
https://medium.com/nebulasio/nebula-weekly-report-71-nebulas-community-development-roadmap-officially-released-e61397c3e477
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-70-83c3c859a7a4
https://medium.com/nebulasio/nebula-weekly-report-69-nebulas-actively-explore-japan-hong-kong-market-in-the-new-year-8c98562475fc
https://medium.com/nebulasio/nebula-weekly-report-69-nebulas-actively-explore-japan-hong-kong-market-in-the-new-year-8c98562475fc
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-68-e817b18c8af7
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-67-c2a27ae98149
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-66-c681d87f5302
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-66-c681d87f5302
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-65-53ae6210faae
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-65-53ae6210faae
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-64-ff633d06833a
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-64-ff633d06833a


nebulas Documentation, ìűIJìŃIJ 1.0

• Weekly Report #63 (01/07/2019) -Community : Nebulas Bi-Weekly Community Dy-
namics#63

• Weekly Report #62 (12/31/2018) -Development : We finished all developments of Neb-
ulas Nova features

• Weekly Report #61 (12/24/2018) -Community : Interview with Nebulas Team Series

• Weekly Report #60 (12/17/2018) -Development : The implementation and integration
testing of the on-chain NR algorithm have been completed

• Weekly Report #59 (12/10/2018) -Community ïijŽThe Roadmap of Autonomous
Metanet was Officially Released

• Weekly Report #58 (12/03/2018) -Development ïijŽCommunity can now submit their
NRC 20 project to NAS nano

• Weekly Report #57 (11/26/2018) -Community : Nebulas Technical Committee Meeting
Minutes(2018.11.21)

• Weekly Report #56 (11/19/2018) -Development : NBRE Has New Development

• Weekly Report #55 (11/12/2018) -Community : PCTA Launch Press Conference Suc-
cessfully Held

• Weekly Report #54 (11/05/2018) -Development : Adding ATP Transfer Support

• Weekly Report #53 (10/29/2018) -Community : Nebulas Joined PCTA As One of Its
First Partners

• Weekly Report #52 (10/22/2018) -Development : Improving Some Functionalities of
NBRE

• Weekly Report #51 (10/15/2018) -Community : NAS Token Swap via NAS nano (v2.2.0)
has Ended

• Weekly Report #50 (10/08/2018) -Development : Compeleting the Basic Implementation
of NBRE

• Weekly Report #49 (10/01/2018) -Community : Nebulas Nova Development Roadmap
was Announced

• Weekly Report #48 (09/24/2018) -Development : Finishing Functional Verification of
NBRE

• Weekly Report #47 (09/17/2018) -Community : Nebulas Team Establishes of Nebulas
Technical Committee

• Weekly Report #46 (09/10/2018) -Development : Nebulas Rank has been Realized and
Open Sourced

• Weekly Report #45 (09/03/2018) -Community : Nebulas Team Announced Unreleased
Locking NAS Addresses

• Weekly Report #44 (08/27/2018) -Development : NAS nano is Back to Apple Store
Again

2.4. Get Involved 169

https://medium.com/p/63938b990745/edit
https://medium.com/p/63938b990745/edit
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-62-dbd919193806
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-62-dbd919193806
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-61-e209af7a1ef2
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-60-62557de76f08
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-60-62557de76f08
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-59-f580bdc554e2
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-59-f580bdc554e2
https://medium.com/@bitsclubPCTA/6319876bde9d
https://medium.com/@bitsclubPCTA/6319876bde9d
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamic-57-5c2bd5e55123
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamic-57-5c2bd5e55123
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-56-7e460344860
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-55-1dd219375baf
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-55-1dd219375baf
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-54-402bf9f34f2f
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-53-3b6fb628e472
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-53-3b6fb628e472
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-52-bbea4b1e3fc2
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-52-bbea4b1e3fc2
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-51-8b6681d6e4da
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-51-8b6681d6e4da
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-50-262e9661c9da
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-50-262e9661c9da
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-49-5245f26d998e
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-49-5245f26d998e
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-48-e57a9951fa55
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-48-e57a9951fa55
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-47-75f14a9164aa
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-47-75f14a9164aa
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-46-14ecfde311ae
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-46-14ecfde311ae
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-45-d41536ed183c
https://medium.com/nebulasio/nebulas-bi-weekly-community-dynamics-45-d41536ed183c
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-44-eae480493bc3
https://medium.com/nebulasio/nebulas-bi-weekly-development-commits-update-44-eae480493bc3


nebulas Documentation, ìűIJìŃIJ 1.0

• Weekly Report #43 (08/20/2018) -Community : Nebulas Inter-contract Call Function
Starts Open Beta

• Weekly Report #42 (08/13/2018) -Announcing the Adjustment of Reserved NAS Distri-
bution to the Nebulas Team

• Weekly Report #41 (08/06/2018) -Nebulas Founders Initiate Bitsclub Vision Program

• Weekly Report #40 (07/31/2018) -Nebulas Incentive Program Season 1 Recap

• Weekly Report #39 (07/24/2018) -Nebulas in the Top Three of MIITâĂŹs Public
Blockchain Evaluation list

• Weekly Report #38 (07/17/2018) -The 50 Monthly Super Contributors Were Announced

• Weekly Report #37 (07/10/2018) -Official Interpretation of the Nebulas Rank Yellow
Paper

• Weekly Report #36 (07/03/2018) -The âĂIJNebulas RankâĂİ Yellow Paper is now public

• Weekly Report #35 (06/26/2018) -Nebulas participates in the Silicon Valley Blockchain
Week hackathon

• Weekly Report #34 (06/19/2018) -Dapp built on Nebulas wins Beijing hackathon

• Weekly Report #33 (06/12/2018) -NIP gets upgraded with Super Contributors

• Weekly Report #32 (06/05/2018) -NAS Nano update features a built-in Dapp Store

• Weekly Report #31 (05/29/2018) -NAS Nano, the official Nebulas mobile wallet,
launches on Android and iOS

• Weekly Report #30 (05/22/2018) -the winners for Week 1 of NIP and awarded nearly
$350,000 USD in NAS

• Weekly Report #29 (05/15/2018) -Nebulas Attends Blockchain Technology Forum at
Google NY

• Weekly Report #28 (05/08/2018) -Our three co-founders attended the Nebulas Commu-
nity Meeting in Shanghai

• Weekly Report #27 (05/01/2018) -The Nebulas Incentive Program Is About to Kick Off

• Weekly Report #26 (04/24/2018) -NVM new feature design

• Weekly Report #25 (04/17/2018) -Important Announcement on Nebulas Lock Up Bonus
Programm

• Weekly Report #24 (04/10/2018) -Dive into NebulasâĂŁâĂŤâĂŁour new Tech column
on Medium

• Weekly Report #23 (04/03/2018) -Nebulas Wins Best Performance Award in Innovative
District

• Weekly Report #22 (03/27/2018) -Nebulas held an online Tech Reddit AMA

• Weekly Report #21 (03/20/2018) -Nebulas set the launch date for its Mainnet 1.0

• Weekly Report #20 (03/13/2018) -Nebulas held a NYAI Meetup

2.4. Get Involved 170

https://medium.com/nebulasio/nebulas-weekly-updates-community-dynamics-e398478f2480
https://medium.com/nebulasio/nebulas-weekly-updates-community-dynamics-e398478f2480
https://medium.com/nebulasio/nebulas-weekly-report-42-dbdd2f4868f5
https://medium.com/nebulasio/nebulas-weekly-report-42-dbdd2f4868f5
https://medium.com/nebulasio/weekly-report-41-nebulas-founders-initiate-bitsclub-vision-program-b6781b7d8d22
https://medium.com/nebulasio/nebulas-weekly-report-40-b363ff6de7be
https://medium.com/nebulasio/nebulas-weekly-report-39-5179cd127ec9
https://medium.com/nebulasio/nebulas-weekly-report-39-5179cd127ec9
https://medium.com/nebulasio/nebulas-weekly-report-38-8b5b504ba843
https://medium.com/nebulasio/nebulas-weekly-report-37-b4d3af075f35
https://medium.com/nebulasio/nebulas-weekly-report-37-b4d3af075f35
https://medium.com/nebulasio/nebulas-weekly-report-36-dd5d032cf5bb
https://medium.com/nebulasio/nebulas-weekly-report-35-e777842bc617
https://medium.com/nebulasio/nebulas-weekly-report-35-e777842bc617
https://medium.com/nebulasio/nebulas-weekly-report-34-strengthened-partnership-with-certik-and-nebulas-included-in-miits-d4d0491f4e54
https://medium.com/nebulasio/nebulas-weekly-report-33-2ef8898c4287
https://medium.com/nebulasio/nebulas-weekly-report-31-742f70b25f63
https://medium.com/nebulasio/nebulas-weekly-report-31-5562228fdb5f
https://medium.com/nebulasio/nebulas-weekly-report-31-5562228fdb5f
https://medium.com/nebulasio/nebulas-weekly-report-30-11eb2c0955ec
https://medium.com/nebulasio/nebulas-weekly-report-30-11eb2c0955ec
https://medium.com/nebulasio/nebulas-weekly-report-29-2bff792cb5a5
https://medium.com/nebulasio/nebulas-weekly-report-29-2bff792cb5a5
https://medium.com/nebulasio/nebulas-weekly-report-28-5d21f1591ed
https://medium.com/nebulasio/nebulas-weekly-report-28-5d21f1591ed
https://medium.com/nebulasio/nebulas-weekly-report-27-ff51dfcd9095
https://medium.com/nebulasio/nebulas-weekly-report-26-b59d9c7c8705
https://medium.com/nebulasio/nebulas-weekly-report-25-5938f46bced9
https://medium.com/nebulasio/nebulas-weekly-report-25-5938f46bced9
https://medium.com/nebulasio/nebulas-weekly-report-24-bd2b77bfe736
https://medium.com/nebulasio/nebulas-weekly-report-24-bd2b77bfe736
https://medium.com/nebulasio/nebulas-weekly-report-23-506685a467a6
https://medium.com/nebulasio/nebulas-weekly-report-23-506685a467a6
https://medium.com/nebulasio/nebulas-weekly-report-22-89d68649f0fe
https://medium.com/nebulasio/nebulas-weekly-report-21-dc1d7f723cd6
https://medium.com/nebulasio/nebulas-weekly-report-20-b9311114a6bc


nebulas Documentation, ìűIJìŃIJ 1.0

• Weekly Report #19 (03/06/2018) -Nebulas Global Tour officially kicked off

• Weekly Report #18 (02/27/2018) -Nebulas First Reddit AMA Comes to a Successful
Conclusion

• Weekly Report #17 (02/20/2018) -Nebulas Writing Contest Rounded Off

• Weekly Report #16 (02/13/2018) -Nebulas is Holding an Online Reddit AMA

• Weekly Report #15 (02/06/2018) -NebulasâĂŹ Silicon Valley Meetup

• Weekly Report #14 (01/30/2018) -NebulasâĂŹ Trip to Silicon Valley

• Weekly Report #13 (01/23/2018) -Nebulas Davos and Silicon Valley Trips

• Weekly Report #12 (01/16/2018) -Hitters Present at the Blockchain Meetup of The
Economist China Readers Club

• Weekly Report #11 (01/09/2018) -Nebulas Testnet Upgraded

• Weekly Report #10 (12/26/2017) -Nebulas CTO Robin Zhong Present at CIE Seminar

• Weekly Report #09 (12/19/2017) -Tsinghua University Talks Well-received

• Weekly Report #08 (12/12/2017) -NAS Token Exchange With Bonus Program a Com-
plete Success

• Weekly Report #07 (12/05/2017) -Nebulas Token Exchange Program with Bonus is end-
ing soon!

• Weekly Report #06 (11/27/2017) -Initiation of âĂIJNAS Token Bonus ProgramâĂİ

• Weekly Report #05 (11/20/2017) -Singapore FinTech Festival

• Weekly Report #04 (11/13/2017) -Columbia University, New York / Nebulas Meetup

• Weekly Report #03 (11/6/2017) -Developing v0.3.0 and improving the Go-nebulas

• Weekly Report #02 (10/30/2017) -Singapore Fintech Festival

• Weekly Report #01 (10/16/2017) -Welcome to the #1 of Nebulas Weekly Report

Ask Me Anything

Nebulas Reddit AMA

• Reddit Questions and Answers - Reddit Weekly Question Recap! (10.29–11.4)

• Reddit Questions and Answers - Reddit Weekly Discussion Recap!ïijĹ10.21–10.26ïijL’

• Nebulas Reddit AMA Recap - With Nebulas Founder Hitters Xu and Co-founder Aero
Wang

• Reddit Questions and Answers - Nebulas Weekly AMA & Constructive Suggestion-
sâĂŁâĂŤâĂŁAugust 6 to August 19

• Reddit Questions and Answers - Nebulas Weekly AMA & Constructive Suggestion-
sâĂŁâĂŤâĂŁJuly 30 to August 6 2018

2.4. Get Involved 171

https://medium.com/nebulasio/nebulas-weekly-report-19-6804d6de0e18
https://medium.com/nebulasio/nebulas-weekly-report-18-30b7f16798cb
https://medium.com/nebulasio/nebulas-weekly-report-18-30b7f16798cb
https://medium.com/nebulasio/nebulas-weekly-report-17-758aa5b07cc2
https://medium.com/nebulasio/nebulas-weekly-report-16-93a31cac6b59
https://medium.com/nebulasio/nebulas-weekly-report-15-fc6df577a78a
https://medium.com/nebulasio/nebulas-weekly-report-14-jan-29th-2018-f3def5ab52ea
https://medium.com/nebulasio/nebulas-weekly-report-13-jan-22th-2018-55d6a18a6cdf
https://medium.com/nebulasio/nebulas-weekly-report-12-jan-15-2018-675cf0fcafe5
https://medium.com/nebulasio/nebulas-weekly-report-12-jan-15-2018-675cf0fcafe5
https://medium.com/nebulasio/nebulas-weekly-report-11-jan-8th-2018-5bedebb0c775
https://medium.com/nebulasio/nebulas-weekly-report-10-dec-25-2017-58624e9b193e
https://medium.com/nebulasio/nebulas-weekly-report-9-dec-18-2017-abdebbde53c4
https://medium.com/nebulasio/nebulas-weekly-report-8-dec-11-2017-bf3709c9c08d
https://medium.com/nebulasio/nebulas-weekly-report-8-dec-11-2017-bf3709c9c08d
https://medium.com/nebulasio/nebulas-weekly-report-7-dec-4-2017-88123e8f8b8d
https://medium.com/nebulasio/nebulas-weekly-report-7-dec-4-2017-88123e8f8b8d
https://medium.com/nebulasio/nebulas-weekly-report-6-nov-27-2017-b261160b3bea
https://medium.com/nebulasio/nebulas-weekly-report-5-nov-20th-2017-8e186f566a01
https://medium.com/nebulasio/nebulas-weekly-report-4-nov-13th-2017-c766489655f5
https://medium.com/nebulasio/nebulas-weekly-report-3-772c2f5ca328
https://medium.com/nebulasio/nebulas-weekly-report-2-oct-30th-2017-3aaba19e4303
https://medium.com/nebulasio/nebulas-weekly-report-1-oct-16th-2017-2d227914e80c
https://medium.com/nebulasio/reddit-weekly-discussion-recap-10-29-11-4-53cb89a307ac
https://medium.com/nebulasio/reddit-weekly-question-recap-10-21-10-26-1f827e0629ef
https://medium.com/nebulasio/nebulas-reddit-ama-recap-9553eadb69e6
https://medium.com/nebulasio/nebulas-reddit-ama-recap-9553eadb69e6
https://medium.com/nebulasio/nebulas-weekly-ama-constructive-suggestions-august-6-to-august-19-c33f992a51a8
https://medium.com/nebulasio/nebulas-weekly-ama-constructive-suggestions-august-6-to-august-19-c33f992a51a8
https://medium.com/nebulasio/nebulas-weekly-ama-constructive-suggestions-july-30-to-august-6-2018-4805d5ab78ca
https://medium.com/nebulasio/nebulas-weekly-ama-constructive-suggestions-july-30-to-august-6-2018-4805d5ab78ca


nebulas Documentation, ìűIJìŃIJ 1.0

• Reddit Questions and Answers - Nebulas Weekly AMA & Constructive Suggestion-
sâĂŁâĂŤâĂŁJuly 20 to July 29

• Nebulas First Live Reddit AMA - With Nebulas Founder Hitters Xu

• NebulasâĂŹ First Reddit AMA Recap - Answers and Viewpoints of Nebulas Founder
Hitters Xu

• Tech Reddit AMA - With Nebulas CTO Robin Zhong

• Nebulas AMA Series#1 - Testnet with Nebulas Co-Founder and CTO Robin Zhong

• Nebulas AMA Series#2 - Testnet with Nebulas Co-Founder and CTO Robin Zhong

• Nebulas AMA Series#3 - General Question with Nebulas Co-Founder and CTO Robin
Zhong

• Answers from AMA - With Nebulas lead core developer Roy Shang

PCTA Reddit AMA Series

• PCTA Reddit AMA Series 1 Recap - Nebulas & XMAX Reddit AMA Recap#Part 1

• PCTA Reddit AMA Series 1 Recap - Nebulas & XMAX Reddit AMA Recap#Part 2

• PCTA Reddit AMA Series 2 Recap - BCH Hard Fork, Beneficial or Harmful

• PCTA Reddit AMA Series 3 Recap - What can we learn from the recent market crash?

Nebulas Interviews

Interviews with Nebulas Team

• Interview with Nebulas Team Series 3 - The Nebulas That IâĂŹm Looking Forward to

• Interview with Nebulas Team Series 2 - Why Join Nebulas

• Interview with Nebulas Team Series 1 - Nebulers‘ Thoughts on the Future of Blockchain

6 Minutes Learning Nebulas NOVA with 92k Lines of Code

Nebulas team just released the Nebulas NOVA on testnet. We invited the Nebulas Chief
Architect, PhD. Chen, to introduce Nebulas NOVA Github code for community. You can go to
Nebulas Github to check out the code and find bugs, you have chance to get NAS reward. And
also welcome to participate in Nebulas Bounty program.

Nebulas NOVA, To Discover Data Value In the Blockchain World

• Nebulas NOVA, To Discover Data Value In the Blockchain World
[(https://www.youtube.com/watch?v=jLIYkG35Ljo)

2.4. Get Involved 172

https://medium.com/nebulasio/nebulas-weekly-ama-constructive-suggestions-july-20-to-july-29-5841c98db83b
https://medium.com/nebulasio/nebulas-weekly-ama-constructive-suggestions-july-20-to-july-29-5841c98db83b
https://medium.com/nebulasio/live-reddit-ama-with-nebulas-founder-hitters-xu-46e8f1a89fa
https://medium.com/nebulasio/nebulas-first-reddit-ama-recap-3f5b75c26c9a
https://medium.com/nebulasio/nebulas-first-reddit-ama-recap-3f5b75c26c9a
https://medium.com/nebulasio/tech-reddit-ama-ab0c87484773
https://medium.com/nebulasio/nebulas-ama-series-1-testnet-e2b751fad48a
https://medium.com/nebulasio/nebulas-ama-series-2-testnet-with-nebulas-co-founder-and-cto-robin-zhong-b54a1b33b85e
https://medium.com/nebulasio/nebulas-ama-series-3-general-question-with-nebulas-co-founder-and-cto-robin-zhong-329d01250e00
https://medium.com/nebulasio/nebulas-ama-series-3-general-question-with-nebulas-co-founder-and-cto-robin-zhong-329d01250e00
https://medium.com/nebulasio/answers-from-the-ama-with-nebulas-lead-core-developer-roy-shang-c4382ac09424
https://medium.com/nebulasio/nebulas-xmax-reddit-ama-recap-part-1-332ef8ab3f46
https://medium.com/nebulasio/nebulas-xmax-reddit-ama-recap-part-2-5f9275bf7ff7
https://medium.com/nebulasio/recap-of-pcta-reddit-ama-series-2-a02e811cd541
https://medium.com/nebulasio/what-can-we-learn-from-the-recent-market-crash-pcta-data-experts-shared-their-sharp-insights-b2570af36a58
https://medium.com/nebulasio/nebulas-nova-to-discover-data-value-in-the-blockchain-world-83bbb5cde05c


nebulas Documentation, ìűIJìŃIJ 1.0

Interviews with Members of Nebulas Research Institute

• Interview with the leader of Nebulas Research Institute Dr. Xuepeng Fan - Take the Lead
to Set Up Nebulas Research Institute

• Interview with Nebulas Mainnet Development Lead Dr. Congming Chen - Let Nebulas
Fly Higher and Farther!

• Interview with Nebulas Senior Researcher Dr. Zaiyang Tang - My Heart Belongs to
Nebulas, I Hope We Shine Together

• Interview with Nebulas Technical Director Dr. Joel - Exclusive Interview to Nebulas
Technical Director Dr. Joel

• Interview with the Senior Researcher of Nebulas Research Institute Dr. Yulong Zeng -
My First Job at Nebulas

• Interview with Nebulas Research Institute Intern Dr. Dai - Life Is A Challenge

Interviews with Members of the Nebulas Technical Committee

• Interview with the CEO and Founder of Nebulas Hitters Xu - Seeing Through The
Blockchain Bubble: Sitting Down For An Interview With Nebulas.io Founder Hitters
Xu

Interviews with Members of the Community

• Interview with Pluto and Xuxue (Nebulas Incentive Program Week 1 Champions) - Neb-
ulas Incentive ProgramâĂŁâĂŤâĂŁInterview with the Champion of Week 1

• Interview with Jason Mansfield (Multi-time winner of Nebulas Incentive Program Season
1) - Interview with a Nebulas DApp Developer: Jason Mansfield

• Interview with Honey Thakuria (Accenture Hackathon Winner using Nebulas) - DApp
Development and Architecture DesignâĂŁâĂŤâĂŁInterview with Honey Thakuria

2.4.10 Ecosystem

NAS nano

NAS nano is the official wallet, developed by the Nebulas team. You may download
it here. It has a beautiful, easy-to-use interface, and implements all the features of a robust
cryptocurrency wallet, as well as multiple security policies, so that users can easily manage
their NAS assets without a steep learning curve.

The NAS nano wallet comes with four main features:

• Quickly and easily create, import, and manage wallets.

• Check the transaction progress in your wallet at a glance.

2.4. Get Involved 173

https://medium.com/nebulasio/take-the-lead-to-set-up-nebulas-research-institute-658073d64ee3
https://medium.com/nebulasio/take-the-lead-to-set-up-nebulas-research-institute-658073d64ee3
https://medium.com/nebulasio/nebulas-researcher-dr-congming-chen-let-nebulas-fly-higher-and-farther-ea67c31954
https://medium.com/nebulasio/nebulas-researcher-dr-congming-chen-let-nebulas-fly-higher-and-farther-ea67c31954
https://medium.com/nebulasio/my-heart-belongs-to-nebulas-i-hope-we-shine-together-bf4b2d2b5068
https://medium.com/nebulasio/my-heart-belongs-to-nebulas-i-hope-we-shine-together-bf4b2d2b5068
https://medium.com/nebulasio/exclusive-interview-to-nebulas-technical-director-dr-joel-6ce0a21bd1a
https://medium.com/nebulasio/exclusive-interview-to-nebulas-technical-director-dr-joel-6ce0a21bd1a
https://medium.com/nebulasio/my-first-offer-at-nebulas-6103a260af72
https://medium.com/nebulasio/nebulas-an-excellent-platform-to-explore-the-blockchain-world-93ad1c7cccda
https://medium.com/nebulasio/seeing-through-the-blockchain-bubble-sitting-down-for-an-interview-with-nebulas-io-8e99ccb3b69f
https://medium.com/nebulasio/seeing-through-the-blockchain-bubble-sitting-down-for-an-interview-with-nebulas-io-8e99ccb3b69f
https://medium.com/nebulasio/seeing-through-the-blockchain-bubble-sitting-down-for-an-interview-with-nebulas-io-8e99ccb3b69f
https://medium.com/nebulasio/nebulas-incentive-program-interview-with-the-champion-of-week-1-87497e1c33e0
https://medium.com/nebulasio/nebulas-incentive-program-interview-with-the-champion-of-week-1-87497e1c33e0
https://www.youtube.com/watch?v=hymsp-TsIcA
https://medium.com/nebulasio/dapp-development-and-architecture-design-interview-with-honey-thakuria-abf0fab0c19f
https://medium.com/nebulasio/dapp-development-and-architecture-design-interview-with-honey-thakuria-abf0fab0c19f
https://nano.nebulas.io/index_en.html


nebulas Documentation, ìűIJìŃIJ 1.0

• Provide three kinds of wallet backups, including mnemonic, Keystore, private key back-
ups, to minimize loss and theft of assets.

• Support NAS, as well as other NRC20 tokens, such as NAT and ATP.

Nebulas Web Wallet Tutorial

• Part 1 - Creating A NAS Wallet

• Part 2 - Sending NAS from your Wallet

• Part 3 - Signing a Transaction Offline

• Part 4 - View Wallet Information

• Part 5 - Check TX Status

• Part 6 - Deploy a Smart Contract

• Part 7 - Call a Smart Contract on Nebulas Wallet

2.4. Get Involved 174

https://medium.com/nebulasio/creating-a-nas-wallet-9d01b5fa2df6
https://medium.com/nebulasio/sending-nas-from-your-wallet-be1b958c4e5d
https://medium.com/nebulasio/signing-a-transaction-offline-ae8278f45201
https://medium.com/nebulasio/view-wallet-information-fcea3ea35d94
https://medium.com/nebulasio/check-tx-status-8dc7dd9b79de
https://medium.com/nebulasio/deploy-a-smart-contract-1e781e13c22e
https://medium.com/nebulasio/call-a-smart-contract-on-nebulas-3522038aec18


nebulas Documentation, ìűIJìŃIJ 1.0

Ecosystem DApps List

You can find recommended DApps and the monthly/weekly champions of the First Season
of the Nebulas Incentive Program here: Summary

You are welcome to recommend more DApps!

The Nebulas DApps Store by the community.

2.4.11 Useful Links

2.4.12 Frequently Asked Questions

This document will focus on the technology behind the Nebulas platform. For broader
questions, please view the Reddit FAQ.

For a better understanding of the Nebulas platform it‘s highly recommended to read the
Nebulas Technical Whitepaper.

Table of Contents

1. Nebulas Rank (NR)

2. Nebulas Force (NF)

3. Developer Incentive Protocol (DIP)

4. Proof of Devotion (PoD) Consensus Algorithm

5. Nebulas Search Engine

6. Fundamentals

2.4. Get Involved 175

https://incentive.nebulas.io/summary.html
https://www.nebulasdapps.com/
https://community.nebulas.io/
https://github.com/nebulasio
https://www.reddit.com/r/nebulas/
https://twitter.com/nebulasio
https://t.me/nebulasen
https://www.reddit.com/r/nebulas/comments/7nt5y0/frequently_asked_questionsfaq/
https://nebulas.io/docs/NebulasTechnicalWhitepaper.pdf
faq.md#nebulas-rank-nr
faq.md#nebulas-force-nf
faq.md#developer-incentive-protocol-dip
faq.md#proof-of-devotion-pod-consensus-algorithm
faq.md#nebulas-search-engine
faq.md#fundamentals


nebulas Documentation, ìűIJìŃIJ 1.0

(a) Nebulas Name Service (NNS)

(b) Lightning Network

(c) Nebulas Token (NAS)

(d) Smart Contracts

i. Language Support

ii. Ethereum Compatibility

Nebulas Rank (NR)

Measures value by considering liquidity and propagation of the address. Nebulas Ranking
tries to establish a trustful, computable and deterministic measurement approach. With the
value ranking system, we will see more and more outstanding applications surfacing on the
Nebulas platform.

When will Nebulas Rank (NR) be ready?

The Nebulas Rank was released in December of 2018. At the time of writing this,
June 28th of 2019, the NR Query Server is not online since the NR algorithm was
updated, as it needs to be refactored. You are welcome to claim this project here.

Will dApps with more transactions naturally be ranked higher?

Not necessarily, as transaction count would only increase the in-and-out degree
over a period of time, up to a certain point. The way the Nebulas Rank is calcu-
lated uses, among many other variables, one‘s median account stake. The median
account stake is the median of the account balance over a period of time.

How does the Nebulas Rank (NR) separate quality dApps from highly transacted
dApps?

By utilizing the Median Account Stake in its calculations, the NR ensures fairness
and resists manipulation to a reasonable degree, ensuring the likelihood of high
quality dApps floating to the top of the hierarchy.

Is the Nebulas Ranking algorithm open-source?

Yes.

2.4. Get Involved 176

faq.md#nebulas-name-service-nns
faq.md#lightning-network
faq.md#nebulas-token-nas
faq.md#smart-contracts
faq.md#what-languages-will-be-supported-when-main-net-launches
faq.md#will-ethereum-smart-contracts-solidity-be-fully-supported
https://go.nebulas.io/project/130


nebulas Documentation, ìűIJìŃIJ 1.0

Who can contribute to the algorithm?

At this time the Nebulas core team is responsible for the development of the algo-
rithm. However, anyone is free to make suggestions, bug reports, and contribute
with code. The SDK‘s repository can be accessed here, and the Nebulas Rank
Offline Service can be accessed here.

Can the Nebulas Rank (NR) algorithm be cheated?

Nothing is impervious to manipulation, but our goal is to make manipulation of the
algorithm as expensive and difficult as possible.

Nebulas Force (NF)

Supports upgrading core protocols and smart contracts on the chains. It provides self-
evolving capabilities to Nebulas system and its applications. With Nebulas Force, developers
can build rich applications in fast iterations, and the applications can dynamically adapt to
community or market changes.

When will Nebulas Force (NF) be ready?

As per the roadmap, Nebulas Force is poised to be released at the end of 2019.

Can smart contracts be upgraded?

Yes, [short summary explaining how it works]

How is Nebulas Force (NF) smart contract upgrading better than other solutions
that are currently or soon-to-be available?

answer here

Can the Nebulas blockchain protocol code be upgraded without forking?

Yes, [short summary explaining how it works]

Can the Nebulas Virtual Machine (NVM) be upgraded?

Yes, [short summary explaining how it works]

2.4. Get Involved 177

https://github.com/nebulasio/nebnr
https://github.com/nebulasio/nr-service
https://wiki.nebulas.io/en/latest/roadmap.html


nebulas Documentation, ìűIJìŃIJ 1.0

Developer Incentive Protocol (DIP)

Designed to build the blockchain ecosystem in a better way. The Nebulas token incentives
will help top developers to add more value to the Nebulas blockchain.

When will the Developer Incentive Protocol (DIP) be ready?

The Developer Incentive Protocol was deployed on the Nebulas Testnet in January
of 2019. It was formally deployed on the Mainnet in May of 2019.

Will there be a limit as to how many rewards one dApp can receive?

answer here

Will developers still be able to do their own ICOs?

answer here

Will only the top Nebulas Rank (NR) dApps receive rewards?

answer here

How often will rewards be given?

answer here

How will you stop cheaters?

The way the DIP is is designed makes it very hard for cheaters to be successful.
Since smart contracts can only be called passively, it would be highly cost ineffec-
tive for a user to try to cheat the system. More about this topic can be read in the
Technical Whitepaper.

Proof of Devotion (PoD) Consensus Algorithm

To build a healthy ecosystem, Nebulas proposes three key points for consensus algorithm:
speediness, irreversibility and fairness. By adopting the advantages of PoS and PoI, and lever-
aging NR, PoD will take the lead in consensus algorithms.

2.4. Get Involved 178



nebulas Documentation, ìűIJìŃIJ 1.0

When will the Proof of Devotion (PoD) Consensus Algorithm be ready?

answer here

What consensus algorithm will be used until PoD is ready?

answer here

How are bookkeepers chosen?

The PoD consensus algorithm uses the Nebulas Rank (NR) to qualify nodes to be
eligible. One node from the set is randomly chosen to propose the new block and
the rest will become the validators.

Do bookkeepers still have to stake?

Yes, once chosen to be a validator for a new block, the validator will need to place
a deposit to continue.

How many validators will there be in each set?

answer here

What anti-cheating mechanisms are there?

answer here

Nebulas Search Engine

Nebulas constructs a search engine for decentralized applications based on Nebulas value
ranking. Using this engine, users can easily find desired decentralized applications from the
massive market.

When will the Nebulas Search Engine be ready?

answer here

Will you be able to search dApps not on the Nebulas platform?

answer here

2.4. Get Involved 179



nebulas Documentation, ìűIJìŃIJ 1.0

Will the Nebulas Search Engine also be decentralized?

answer here

Will the Nebulas Rank (NR) control the search results ranking?

answer here

What data will you be able to search?

We plan on developing many different ways to be able to search the blockchain:

• crawl relevant webpages and establish a map between them and the smart
contracts

• analyze the code of open-source smart contracts

• establish contract standards that enable easier searching

Fundamentals

Nebulas Name Service (NNS)

By using smart contracts, the Nebulas development team will implement a DNS-like do-
main system named Nebulas Name Service (NNS) on the chain while ensuring that it is un-
restricted, free and open. Any third-party developers can implement their own domain name
resolution services independently or based on NNS.

When will the Nebulas Name Service be ready?

answer here

When a name is bid on, how long do others have to place their bid?

answer here

How do others get notified that a name is being bid on?

answer here

When a name is reserved who gets the bid amount?

answer here

2.4. Get Involved 180



nebulas Documentation, ìűIJìŃIJ 1.0

If I want to renew my name after one year will I need to deposit more NAS?

answer here

Will we be able to reserve names prior to the launch of NNS?

answer here

Lightning Network

Nebulas implements the lightning network as the infrastructure of blockchains and offers
flexible design. Any third-party developers can use the basic service of lightning network to
develop applications for frequent transaction scenarios on Nebulas. In addition, Nebulas will
launch the worldâĂŹs first wallet app that supports the lightning network.

When will lightning network be supported?

answer here

The Nebulas Token (NAS)

The Nebulas network has its own built-in token, NAS. NAS plays two roles in the network.
First, as the original money in the network, NAS provides asset liquidity among users, and
functions as the incentive token for PoD bookkeepers and DIP. Second, NAS will be charged
as the calculation fee for running smart contracts. The minimum unit of NAS is 10âĹŠ18 NAS.

What will happen to the Nebulas ERC20 tokens when NAS is launched?

The ERC20 tokens were swapped by its owners and exchanges that held them at a
1 to 1 rate.

Will dApps on the Nebulas platform be able to issue their owns ICOs and
tokens?

answer here

Smart Contracts

What languages will be supported when Main-net launches?

answer here

2.4. Get Involved 181



nebulas Documentation, ìűIJìŃIJ 1.0

Will Ethereum Smart Contracts (Solidity) be fully supported?

answer here

What other language support will follow (and when)?

answer here

binary storage

What is recommended way to store binary data in Nebulas blockchain? Is it possible at
all? Do you encourage such use of blockchain? Also, i couldn‘t find information regarding
GlobalContractStorage mentioned in docs, what is it?

Currently binary data can be stored on chain by binary transaction. The limit size
of binary is 128k. But we donâĂŹt encourage storing data on the chain because
the user might store some illegal data.

GlobalContractStoragenot currently implemented. It provides support for
multiple contract sharing data for the same developer.

ChainID & connect

Can you tell us what the chainID of Mainnet and Testnet is? I have compiled the source
code of our nebulas, but not even our test network?

chainID of Nebulas:

• Mainnet: 1

• Testnet: 1001

• private: default 100, users can customize the values.

The network connection:

• Mainnet:

– source code:master

– wiki:Mainnet

• Testnet:

– source code:testnet

– wiki:Testnet

2.4. Get Involved 182

https://github.com/nebulasio/go-nebulas/tree/master
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/mainnet
https://github.com/nebulasio/go-nebulas/tree/testnet
https://github.com/nebulasio/nebdocs/blob/master/docs/go-nebulas/testnet


nebulas Documentation, ìűIJìŃIJ 1.0

Smart Contract Deployment

Our smart contract deployment, I think is to submit all contract code directly, is the de-
ployment method like this?

Yeah, We can deploy the contract code directly, just as it is to release code to the
NPM repository, which is very simple and convenient.

smart contract IDE

We don‘t have any other smart contract ides, like solidity‘s “Remix“? Or is there docu-
mentation detailing which contract parameters can be obtained? (because I need to implement
the random number and realize the logic, I calculate the final random number according to the
parameters of the network, so I may need some additional network parameters that will not be
manipulated.)

You can use web-wallet to deploy the contract, it has test function to check the
parameters and contract execution result.

2.4.13 Licenses

Nebulas Open Source Project License

The preferred license for the Nebulas Open Source Project is the GNU Lesser General
Public License Version 3.0 (âĂIJLGPL v3âĂİ), which is commercial friendly, and encourage
developers or companies modify and publish their changes.

However, we also aware that big corporations is favoured by other licenses, for example,
Apache Software License 2.0 (âĂIJApache v2.0âĂİ), which is more commercial friendly. For
the Nebulas Team, we are very glad to see the source code and protocol of Nebulas is widely
used both in open source applications and non-open source applications.

In this way, we are still considering the license choice, which kind of license is the best
for nebulas ecosystem. We expect to select one of the LGPL v3, the Apache v2.0 or the MIT
license. If the latter is chosen, it will come with an amendment allowing it to be used more
widely.

Contributor License Agreement

All contributions to Nebulas wikis are licensed under the Creative Commons License SA
4.0.

Contributors

For a complete list of everyone who contributed to the wiki, click here.

• genindex

2.4. Get Involved 183

https://github.com/nebulasio/web-wallet
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/nebulasio/nebdocs/graphs/contributors


nebulas Documentation, ìűIJìŃIJ 1.0

• modindex

• search

2.4. Get Involved 184


	Welcome to the open-source Nebulas wiki!
	Use Wiki
	Mainnet
	Dapps
	Ecosystem
	Get Involved


